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Abstract

In this paper, we prove a certain geometric version of the Grothendieck
Conjecture for tautological curves over Hurwitz stacks. This result gen-
eralizes a similar result obtained by Hoshi and Mochizuki in the case of
tautological curves over moduli stacks of pointed smooth curves. In the
process of studying this version of the Grothendieck Conjecture, we also
examine various fundamental geometric properties of “profiled log Hur-
witz stacks”, i.e., log algebraic stacks that parametrize Hurwitz coverings
for which the marked points are equipped with a certain ordering deter-
mined by combinatorial data which we refer to as a “profile”.
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Introduction

In [CbTpI], the theory of profinite Dehn twists was developed and applied to
prove the following “geometric version of the Grothendieck Conjecture for tau-
tological curves over moduli stacks of pointed smooth curves”.
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Theorem M. (cf. [CbTpI], Theorem D) Let (g, r) be a pair of nonnegative
integers such that 2g − 2 + r > 0; Σ a nonempty set of prime numbers; k
an algebraically closed field of characteristic zero. Write Mg,r for the moduli
stack of r-pointed smooth curves of genus g whose r marked points are equipped
with an ordering; Cg,r → Mg,r for the tautological curve over Mg,r [cf.

the discussion entitled “Curves” in Notations and Conventions]; (Mg,r)k
def
=

Mg,r×Z k [cf. the discussion entitled “Curves” in Notations and Conventions];

(Cg,r)k def
= Cg,r ×Z k [cf. the discussion entitled “Curves” in Notations and

Conventions]; ΠMg,r

def
= π1((Mg,r)k) for the étale fundamental group of the

moduli stack (Mg,r)k; Πg,r for the maximal pro-Σ quotient of the kernel Ng,r

of the natural surjection π1((Cg,r)k) � π1((Mg,r)k) = ΠMg,r
; ΠCg,r for the

quotient of the étale fundamental group π1((Cg,r)k) of (Cg,r)k by the kernel of

the natural surjection Ng,r � Πg,r; OutC(Πg,r) for the group of outomorphisms
[cf. the discussion entitled “Topological groups” in Notations and Conventions]
of Πg,r which induce bijections on the set of cuspidal inertia subgroups of Πg,r.
Thus, we have a natural sequence of profinite groups

1 −→ Πg,r −→ ΠCg,r −→ ΠMg,r
−→ 1

which determines an outer representation

ρg,r : ΠMg,r
−→ Out(Πg,r)

Then the following hold:

(i) Let H ⊆ ΠMg,r be an open subgroup of ΠMg,r . Suppose that one of the
following two conditions satisfied:

(a) 2g − 2 + r > 1, i.e., (g, r) /∈ {(0, 3), (1, 1)}
(b) (g, r) = (1, 1), 2 ∈ Σ, and H = ΠMg,r .

Then the composite of natural homomorphisms

Aut(Mg,r)k((Cg,r)k) −→ AutΠMg,r
(ΠCg,r )/Inn(Πg,r)

∼−→ ZOut(Πg,r)(Im(ρg,r)) ⊆ ZOut(Πg,r)(ρg,r(H))

[cf. the discussion entitled “Topological groups” in Notations and Con-
ventions] determines an isomorphism

Aut(Mg,r)k((Cg,r)k) ∼−→ ZOutC(Πg,r)(ρg,r(H)).

Here, we recall that Aut(Mg,r)k((Cg,r)k) is isomorphic to⎧⎪⎨
⎪⎩
Z/2Z× Z/2Z if (g, r) = (0, 4);

Z/2Z if (g, r) ∈ {(1, 1), (1, 2), (2, 0)};
{1} if (g, r) /∈ {(0, 4), (1, 1), (1, 2), (2, 0)}.
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(ii) Let H ⊆ OutC(Πg,r) be a closed subgroup of OutC(Πg,r) that contains an
open subgroup of Im(ρg,r) ⊆ Out(Πg,r). Suppose that

2g − 2 + r > 1, i.e., (g, r) /∈ {(0, 3), (1, 1)}.

Then H is almost slim [cf. the discussion entitled “Topological groups”
in Notations and Conventions]. If, moreover,

2g − 2 + r > 2, i.e., (g, r) /∈ {(0, 3), (0, 4), (1, 1), (1, 2), (2, 0)},

then H is slim [cf. the discussion entitled “Topological groups” in Nota-
tions and Conventions].

Roughly speaking, this result was obtained in [CbTpI] as a consequence of
the following two steps.

(1) The r > 0 case is reduced to the Grothendieck Conjecture for configura-
tion spaces and then proved by applying the combinatorial Grothendieck
Conjecture [i.e., the graphicity of outomorphisms of surface groups sat-
isfying certain combinatorial conditions [cf. [NodNon], Theorem A]] and
elementary topological and graph-theoretic considerations.

(2) The r = 0 case is reduced to the r > 0 case by using the theory of
clutching morphisms [cf. [Knud]] and the theory of profinite Dehn twists
[cf. [CbTpI]].

In the present paper, we prove a version of Theorem M for tautological curves
over (log) Hurwitz stacks [cf. [CbTpI], Remark 6.14.1]. In order to carry out
steps (1) and (2) in the case of tautological curves over (log) Hurwitz stacks, it
is necessary to overcome certain difficulties, as follows:

(1Hur) It is necessary to prove a version of the Grothendieck Conjecture for con-
figuration spaces that applies to certain more combinatorially complicated
spaces that arise from (log) Hurwitz stacks. This is done by applying sim-
ilar techniques to the techniques applied in (1), but these techniques must
be applied to spaces that are much more combinatorially complicated than
configuration spaces.

(2Hur) Unlike the situation in (2), where one may consider arbitrary deforma-
tions and degenerations of pointed stable curves, it is necessary to restrict
oneself to deformations and degenerations that are compatible with the
covering under consideration. This difficulty is overcome by applying sim-
ilar techniques to the techniques applied in (2), but, just as in the case of
(1Hur), the situation in which these techniques must be applied is consid-
erably more combinatorially complicated than the situation considered in
(2).
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This paper is organized as follows. In §1, after recalling the definitions of
Hurwitz stacks, we define profiled (log) Hurwitz stacks and examine various
fundamental geometric properties of profiled (log) Hurwitz stacks such as ir-
reducibility. We also prove the existence of certain natural homotopy exact
sequences related to these profiled (log) Hurwitz stacks that will be of use later
in the paper. In §2, we define Hurwitz-type log configuration spaces and dis-
cuss various objects related to these spaces. In §3, we prove a key result [cf.
Proposition 3.1] which asserts that outomorphisms of surface groups that satisfy
certain relatively weak conditions are in fact trivial. In §4, after discussing the
existence of certain suitable degenerations of simple coverings, i.e., the cover-
ings parametrized by Hurwitz stacks, we prove the main result by applying the
theory of profinite Dehn twists, together with the results obtained in previous
sections.

Our main result is the following.

Theorem A. Let Σ be a nonempty set of prime numbers; k an algebraically
closed field of characteristic zero; (g, d, r) a triple of nonnegative integers such
that

d ≥ 2 ∧ (g, r) /∈ {(0, 0), (1, 0)} ∧ (g, d, r) /∈ {(0, 2, 1), (0, 3, 1)}
(⇒ 2g − 2 + dr > 1 ∧ 2g + 2d+ r − 5 ≥ 1).

Write (Hg,d,r)k for the r-profiled Hurwitz stack of type (g, d) over k [cf. Defi-
nition 1.8; Definition 1.13, (ii)], where dim(Hg,d,r)k = 2g−2+2d+r−3 = 2g+
2d+ r−5 ≥ 1 [cf. Corollary 1.9]; (Cg,d,r)k → (Hg,d,r)k for the restriction of the
tautological curve over (Mg,dr)k to (Hg,d,r)k via the natural (1-)morphism

(Hg,d,r)k → (Mg,dr)k [cf. Proposition 1.10, (iii)]; ΠHg,d,r

def
= π1((Hg,d,r)k)

for the étale fundamental group of the profiled Hurwitz stack (Hg,d,r)k; Πg,d,r

for the maximal pro-Σ quotient of the kernel Ng,d,r of the natural surjection
π1((Cg,d,r)k) � π1((Hg,d,r)k) = ΠHg,d,r

; ΠCg,d,r for the quotient of the étale
fundamental group π1((Cg,d,r)k) of (Cg,d,r)k by the kernel of the natural sur-

jection Ng,d,r � Πg,d,r; OutC(Πg,d,r) for the group of outomorphisms [cf. the
discussion entitled “Topological groups” in Notations and Conventions] of Πg,d,r

which induce bijections on the set of cuspidal inertia subgroups of Πg,d,r. Thus,
we have a natural sequence of profinite groups

1 −→ Πg,d,r −→ ΠCg,d,r −→ ΠHg,d,r
−→ 1

which determines an outer representation

ρg,d,r : ΠHg,d,r
−→ Out(Πg,d,r)

Then the following hold:

(i) Let H ⊆ ΠHg,d,r
be an open subgroup of ΠHg,d,r

. Then the composite of
natural homomorphisms

Aut(Hg,d,r)k((Cg,d,r)k) −→ AutΠHg,d,r
(ΠCg,d,r )/Inn(Πg,d,r)

∼−→ ZOut(Πg,d,r)(Im(ρg,d,r)) ⊆ ZOut(Πg,d,r)(ρg,d,r(H))
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[cf. the discussion entitled “Topological groups” in Notations and Con-
ventions] determines an isomorphism

Aut(Hg,d,r)k((Cg,d,r)k) ∼−→ ZOutC(Πg,d,r)(ρg,d,r(H)).

Moreover, Aut(Hg,d,r)k((Cg,d,r)k) is isomorphic to⎧⎪⎨
⎪⎩
Z/2Z× Z/2Z if (g, d, r) ∈ {(0, 2, 2), (0, 4, 1)};
Z/2Z if (g, d, r) ∈ {(g, 2, r) | (g, r) �= (0, 2)} ∪ {(2, d, 0)};
{1} if (g, d, r) /∈ {(0, 4, 1), (g, 2, r), (2, d, 0)}.

(ii) Let H ⊆ OutC(Πg,d,r) be a closed subgroup of OutC(Πg,d,r) that contains
an open subgroup of Im(ρg,d,r) ⊆ Out(Πg,d,r). Then H is almost slim
[cf. the discussion entitled “Topological groups” in Notations and Con-
ventions]. If, moreover,

(g, d, r) /∈ {(0, 4, 1), (g, 2, r), (2, d, 0)},

then H is slim [cf. the discussion entitled “Topological groups” in Nota-
tions and Conventions].

Notations and Conventions

In this paper, we follow the notations and conventions of [CbTpI].

Sets : If S is a set, then we shall denote by S# the cardinality of S.

Numbers : The notation Primes will be used to denote the set of prime
numbers. The notation N will be used to denote the set or [additive] monoid
of nonnegative rational integers. The notation Z will be used to denote the set,
group, or ring of rational integers.

Topological groups : Let G be a topological group and P a property of
topological groups [e.g., “abelian” or “pro-Σ” for some Σ ⊆ Primes]. Then we
shall say that G is almost P if there exists an open subgroup of G that is P.
Let G be a topological group and H ⊆ G a closed subgroup of G. Then we shall
denote by ZG(H) (respectively, NG(H);CG(H)) the centralizer (respectively,
normalizer; commensurator) of H ⊆ G, i.e.,

ZG(H)
def
= {g ∈ G | ghg−1 = h for any h ∈ H},

(respectively, NG(H)
def
= {g ∈ G | g ·H · g−1 = H}

CG(H)
def
= {g ∈ G | H ∩ g ·H · g−1 is of finite index in H and g ·H · g−1}).

We shall refer to Z(G) = ZG(G) as the center of G. It is immediate from the
definitions that
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ZG(H) ⊆ NG(H) ⊆ CG(H); H ⊆ NG(H).

We shall say that the closed subgroup H is commensurably terminal in G if
H = CG(H). We shall say that G is slim if ZG(U) = {1} for any open subgroup
U of G.

Let G be a topological group. Then we shall write Aut(G) for the group
of [continuous] automorphisms of G, Inn(G) ⊆ Aut(G) for the group of inner

automorphisms of G, and Out(G)
def
= Aut(G)/Inn(G). We shall refer to an

element of Out(G) as an outomorphism of G. Now suppose that G is center-free
[i.e., ZG(G) = {1}]. Then we have an exact sequence of groups

1 −→ G (
∼→ Inn(G)) −→ Aut(G) −→ Out(G) −→ 1.

If J is a group, and ρ : J → Out(G) is a homomorphism, then we shall denote
by

G
out
� J

the group obtained by pulling back the above exact sequence of profinite groups
via ρ. Thus, we have a natural exact sequence of groups

1 −→ G −→ G
out
� J −→ J −→ 1

Suppose further that G is profinite and topologically finitely generated. Then
one verifies immediately that the topology of G admits a basis of characteristic
open subgroups, which thus induces a profinite topology on the groups Aut(G)
and Out(G) with respect to which the above exact sequence relating Aut(G)
and Out(G) determines an exact sequence of profinite groups. In particular,
one verifies easily that if, moreover, J is profinite and ρ : J → Out(G) is

continuous, then the above exact sequence involving G
out
� J determines an exact

sequence of profinite groups. Let G, J be profinite groups. Suppose that G
is center-free and topologically finitely generated. Let ρ : J → Out(G) be a

continuous homomorphism. Write AutJ(G
out
� J) for the group of [continuous]

automorphisms of G
out
� J that preserve and induce the identity automorphism on

the quotient J . Then one verifies immediately that the operation of restricting
to G determines an isomorphism of profinite groups

AutJ(G
out
� J)/Inn(G)

∼→ ZOut(G)(Im(ρ)).

Log schemes : For basic notions concerning log schemes, see [KK1], [KK2].
When a scheme appears in a diagram of log schemes, the scheme is to be under-
stood as the log scheme obtained by equipping the scheme with the trivial log
structure. If X log is a log scheme, then we shall refer to the largest open sub-
scheme of the underlying scheme of X log over which the log structure is trivial
as the interior of X log. Fiber products of fs log schemes are to be understood
as fiber products taken in the category of fs log schemes. Note that in general,
the underlying scheme of the fiber product of fs log schemes is not naturally
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isomorphic to the fiber product of the underlying schemes of the given fs log
schemes. However, if a morphism X log → Y log between two fs log schemes X log

and Y log is strict [i.e., the pull-back of the log structure of Y log is naturally
isomorphic to the log structure of X log], then for any morphism Z log → Y log

between two fs log schemes Z log and Y log, the underlying scheme of the fiber
product X log ×Y log Z log is naturally isomorphic to X ×Y Z.

Curves : We shall use the terms “hyperbolic curve”, “cusp”, “stable log curve”,
and “smooth log curve” as they are defined in [CmbGC]. If (g, r) is a pair of
nonnegative integers such that 2g−2+ r > 0, then we shall denote byMg,r the
moduli stack of r-pointed stable curves of genus g over Z whose r marked points
are equipped with an ordering, by Mg,r ⊆ Mg,r the open substack of Mg,r

parameterizing smooth curves, by Mlog

g,r the log stack obtained by equipping

Mg,r with the log structure associated to the divisor with normal crossings
Mg,r \Mg,r ⊆ Mg,r, by Cg,r → Mg,r the tautological curve over Mg,r , and
by Dg,r ⊆ Cg,r the corresponding tautological divisor of marked points of Cg,r →
Mg,r. Then the divisor given by the union of Dg,r with the inverse image in Cg,r
of the divisor Mg,r \Mg,r ⊆ Mg,r determines a log structure on Cg,r; denote
the resulting log stack by Clogg,r. Thus, we obtain a (1-)morphism of log stacks

Clogg,r → Mlog

g,r. We shall denote by Cg,r ⊆ Cg,r the interior of Clogg,r. Thus, we
obtain a (1-)morphism of stacks Cg,r → Mg,r. Let S be a scheme. We shall

append a subscript “S” toMg,r,Mg,r,Mlog

g,r, Cg,r, Cg,r, and C
log

g,r to denote the
result of base-changing to S.

Let n be a positive integer and X log a stable log curve of type (g, r) over a
log scheme Slog. Then we shall refer to the log scheme obtained by pulling back

the (1-)morphism Mlog

g,r+n → Mlog

g,r given by forgetting the last n points via

the classifying (1-)morphism Slog →Mlog

g,r of X log as the n-th log configuration

space of X log.

1 Basic properties of profiled log Hurwitz stacks

In this section, after reviewing the basic theory of Hurwitz stacks in Definitions
1.1, 1.2, 1.3, 1.4; Theorem 1.5; Lemma 1.6 [cf. [Ful], §6, and [GCH]], we de-
fine “profiled” versions — i.e., versions equipped with various orderings of the
marked points — of the notion of a simple admissible covering [cf. Definition
1.7] and of (log) Hurwitz stacks [cf. Definition 1.8]. After defining profiled (log)
Hurwitz stacks, we examine various fundamental geometric properties of these
stacks in Proposition 1.10 and prove the existence of certain natural homotopy
exact sequences related to these stacks in Proposition 1.14.

Definition 1.1. (cf. [GCH], §1.3) Let (g, d) be a pair of nonnegative integers
such that 2g − 2 + 2d ≥ 3 and d ≥ 2. For any scheme S over Spec Z[ 1d! ], write
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Hord
g,d (S) for the following groupoid [i.e., a category in which every morphism is

invertible]:

• Objects: an object is a collection of arrows

(π : C → P ;σ1, . . . , σ2g−2+2d : S → P )

in the category of S-schemes such that the following properties hold: there
exists an isomorphism of S-schemes P

∼→ P1
S ; the structure morphism

C → S is a smooth, geometrically connected, proper family of curves of
genus g; π is [necessarily finite] flat of degree d with simple ramification
[i.e., the discriminant divisor of π is étale over the base S] exactly at the
[necessarily mutually disjoint] sections σ1, . . . , σ2g−2+2d : S → P .

• Morphisms: a morphism between two objects (π : C → P ;σ1, . . . , σ2g−2+2d)

and (π′ : C ′ → P ′;σ′1, . . . , σ
′
2g−2+2d) is a pair of isomorphisms α : C

∼→ C ′

and β : P
∼→ P ′ such that β ◦ π = π′ ◦ α.

We shall refer to the resulting stack as the ordered Hurwitz stack Hord
g,d of type

(g, d) [cf. Remark 1.1.1 below]. Note that there is a natural action of the
symmetric group on 2g − 2 + 2d letters on Hord

g,d . We shall refer to the stack-

theoretic quotient of the ordered Hurwitz stack Hord
g,d of type (g, d) by this action

of the symmetric group on 2g− 2 + 2d letters as the Hurwitz stack Hg,d of type
(g, d).

Remark 1.1.1. When d ≥ 3, the stack Hord
g,d is representable by a scheme [cf.

Theorem 1.5 below; [Ful], Theorem 6.3; [GCH], §1.3; [GCH], §3.22]. Here, we
remark that a slight oversight in the statement of the Theorem of [GCH], §3.22, is
corrected in Theorem 1.5 below: That is to say, in the statement of the Theorem
of [GCH], §3.22, the definition of the morphisms of the stack under consideration
are only explicitly defined in the case where the domain and codomain of the
morphism are identical; in fact, however, morphisms must be defined in the case
where the domain and codomain of the morphism are not necessarily identical,
i.e., as is done in the statement of Theorem 1.5 given below [where one considers
morphisms between primed and un-primed collections of data].

Next, we recall the notion of admissible coverings introduced in [HM], [GCH]
for constructing a compactified version of the Hurwitz stack.

Definition 1.2. (cf. [GCH], §3.4) Let (g, q, r) be a triple of nonnegative inte-
gers.

(i) Let Sq denote the symmetric group on q letters. Note that we have a

natural action of Sq on Mlog

g,q+r given by permuting the first q marked

points. We shall denote by Mlog

g,[q]+r the (log) stack theoretic quotient of

Mlog

g,q+r by Sq. If r = 0, we simply write Mlog

g,[q]. Note that the universal
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stable log curve Clogg,q+r →Mlog

g,q+r descends to a stable log curve Clogg,[q]+r →
Mlog

g,[q]+r.

(ii) Let Slog be a fine log scheme. A morphism between log stacks Slog →
Mlog

g,[q]+r will be referred to as the data for a ([q] + r)-pointed stable log

curve of genus g. Let C log → Slog be the pull-back of the universal stable

log curve Clogg,[q]+r →Mlog

g,[q]+r via such a morphism. By a slight abuse of

terminology, we shall refer to such a stable log curve C log → Slog as a
([q]+ r)-pointed stable log curve of genus g. If we forget the log structures
of such a stable log curve, the resulting (f : C → S;μf ⊆ C) (where
μf ⊆ C is the divisor of marked points) will be referred to as a ([q] + r)-
pointed stable curve of genus g, or, when r = 0, simply as a [q]-pointed
stable curve of genus g. When the integers q and g are left unspecified, a
[q]-pointed stable curve of genus g will be referred to as a symmetrically
pointed stable curve [over S].

Definition 1.3. (cf. [GCH], §3.9) Let d be a positive integer; S a scheme;
(f : C → S;μf ⊆ C) and (h : D → S;μh ⊆ D) symmetrically pointed stable
curves over S. A finite morphism π : C → D over S will be called an admissible
covering [of degree d] if it satisfies the following conditions:

• Each fiber of h : D → S admits a dense open subset over which π is finite
flat of degree d.

• We have inclusions of effective relative (with respect to the morphism f)
divisors μf ⊆ π−1(μh) ⊆ d · μf on C.

• The morphism f is smooth at c ∈ C if and only if the morphism h is
smooth at π(c).

• The morphism π is étale, except

– over μh, where it is tamely ramified;

– at nodes of the geometric fibers over S: if s is a geometric point of S, λ
is a node of Cs, and ν = π(λ), then there exist a ∈ msh

S,s, x, y ∈ msh
C,λ,

and u, v ∈ msh
D,ν such that x, y (respectively, u, v) generate msh

f−1(s),λ

(respectively, msh
h−1(s),ν), and xy = a, uv = ae, u = xe, v = ye (for

some natural number e such that e ∈ (Osh
S,s)

×).

Here, “msh” denotes the maximal ideal of the strict henselization “Osh”
at the specified geometric point of the local ring in question.

An admissible covering π : C → D over S will be called a simple admissible
covering if the discriminant divisor of π is étale over S in some neighborhood of
μh.
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Definition 1.4. Let (g, d) be a pair of nonnegative integers such that 2g− 2+
2d ≥ 3 and d ≥ 2. For any scheme S over Spec Z[ 1d! ], write Hg,d(S) for the
following groupoid [i.e., a category in which every morphism is invertible]:

• Objects: an object is a simple admissible covering π : C → D of degree
d from a [(d− 1)(2g − 2 + 2d)]-pointed stable curve (f : C → S;μf ⊆ C)
of genus g to a [2g − 2 + 2d]-pointed stable curve (h : D → S;μh ⊆ D) of
genus 0.

• Morphisms: a morphism between two objects π : C → D and π′ : C ′ → D′

is a pair of isomorphisms α : C
∼→ C ′ and β : D

∼→ D′ that are compatible
with the respective divisors of marked points such that β ◦ π = π′ ◦ α.

We shall refer to the resulting stack as the compactified Hurwitz stack Hg,d of
type (g, d).

Remark 1.4.1. One verifies immediately that the Hurwitz stackHg,d of Definition
1.1 may be regarded as an open substack of the compactified Hurwitz stack Hg,d

of Definition 1.4, namely, the substack over which the pointed stable curves that
appear in Definition 1.4 are smooth over S.

Remark 1.4.2. The stack Hg,d is geometrically irreducible over Z[ 1d! ] [cf. the
assertion concerning “HUSb,d” in [GCH], §2.9]. Here, we note that whereas in
[GCH], §2.9, one works over Z[ 1b! ], where b = 2g − 2 + 2d [cf. [GCH], §1.3],
in the present discussion, we work over Z[ 1d! ]. On the other hand, one verifies
immediately that the asserted geometric irreducibility may be extended to the
situation of the present discussion.

One of the main results of [GCH] is the following.

Theorem 1.5. (cf. [GCH], §3.22, §3.23, and §3.27) Let (g, d, r) be nonnegative
integers such that 2g − 2 + 2d + r ≥ 3 and d ≥ 2. Write Ag,d,r for the stack
over Z[ 1d! ] defined as follows: if S is a scheme, then we take the objects of

Ag,d,r(S) to be the simple admissible coverings π : C → D of degree d from a
[(d−1)(2g−2+2d)+dr]-pointed stable curve (f : C → S;μf ⊆ C) of genus g to
a [2g− 2+2d+ r]-pointed stable curve (h : D → S;μh ⊆ D) of genus 0; we take
the morphisms of Ag,d,r(S) between two objects π : C → D and π′ : C ′ → D′ to
be the pairs of S-isomorphisms α : C → C ′ and β : D → D′ that are compatible
with the respective divisors of marked points such that π′◦α = β◦π. Then Ag,d,r

is a separated algebraic stack of finite type over Z[ 1d! ]. Moreover, Ag,d,r may be

equipped with a natural log structure; denote the resulting log stack by Alog

g,d,r.

Finally, there is a natural morphism of log stacks Alog

g,d,r → (Mlog

0,[2g−2+2d+r])Z[ 1
d! ]

(given by mapping (C;D;π) �→ D) over Z[ 1d! ] which is log étale, quasi-finite, and
proper.
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Remark 1.5.1. One verifies immediately that, when r = 0, the stack Ag,d,0 may
be naturally identified with the stack Hg,d of Definition 1.4.

Remark 1.5.2. Write Ag,d,r ⊆ Ag,d,r for the open substack over which the curves
C and D of Theorem 1.5 are smooth. Then a routine explicit computation of
the completion of Ag,d,r along a pointed valued in an algebraically closed field

shows that the normalization Ãg,d,r of Ag,d,r contains Ag,d,r as an open substack

whose complement in Ãg,d,r, equipped with the reduced induced stack structure,
is a relative divisor with normal crossings over Z[ 1d! ], hence determines a log

structure on Ãg,d,r. Finally, Ãg,d,r is proper, smooth over Z[ 1d! ], and Ãlog
g,d,r is

log smooth over Z[ 1d! ] [hence, in particular, log regular] and log étale, quasi-

finite, and proper over (Mlog

0,[2g−2+2d+r])Z[ 1
d! ]

[cf. [GCH], §3.23].

Lemma 1.6. Let (g, q, d, s, t) be nonnegative integers such that d ≥ 2; π :
C → D a simple admissible covering of degree d from a [s]-pointed stable curve
(f : C → S;μf ⊆ C) of genus g to a [t]-pointed stable curve (h : D → S;μh ⊆ D)
of genus q. Suppose that S is connected. Then, if σf : S → μf is a section
(where we note that such sections always exist étale locally on S), then the
ramification index of the restriction of π to each of the fibers of f along σf

is constant on S. Moreover, if π is unramified (respectively, ramified) over
a section σh : S → μh, then the underlying topological space of π−1(S) is the
disjoint union of the images, on underlying topological spaces, of d (respectively,
(d− 1)) distinct sections S → μf .

Proof. Lemma 1.6 follows immediately from Definition 1.3.

Next, we introduce the notions of profiled simple admissible coverings and
profiled Hurwitz stacks.

Definition 1.7. Let (g, d, r) be a triple of nonnegative integers such that 2g −
2 + 2d + r ≥ 3 and d ≥ 2; π : C → D a simple admissible covering of degree d
from a ([(d − 1)(2g − 2 + 2d)] + dr)-pointed stable curve (f : C → S;μf ⊆ C)
of genus g to a ([2g − 2 + 2d] + r)-pointed stable curve (h : D → S;μh ⊆ D)
of genus 0 [cf. Definition 1.2, Definition 1.3]. Then the morphism π : C → D,
equipped with these partial orderings on the marked points, will be called an
r-profiled simple admissible covering, if these partial orderings on the marked
points satisfy the following conditions [cf. Lemma 1.6]:

• The divisor μh consists, étale locally on S, of 2g−2+2d unordered sections
over which π ramifies and r ordered sections σ1, . . . , σr over which π is
unramified.

• The divisor μf consists, étale locally on S, of (d−1)(2g−2+2d) unordered
sections over the sections of μh over which π ramifies and dr ordered
sections over the sections σ1, . . . , σr such that the sections over σk (1 ≤
k ≤ r) are indexed by the natural numbers between (k − 1)d+ 1 and kd.

11



When C and D are smooth, we shall, on occasion, omit the word “admissible”
from this terminology “r-profiled simple admissible covering”.

Definition 1.8. Let (g, d, r) be a triple of nonnegative integers such that 2g −
2+2d+ r ≥ 3 and d ≥ 2. For any scheme S over Spec Z[ 1d! ], write Hg,d,r(S) for
the following groupoid [i.e., a category in which every morphism is invertible]:

• Objects: an object is an r-profiled simple admissible covering π : C → D
of degree d from a ([(d − 1)(2g − 2 + 2d)] + dr)-pointed stable curve (f :
C → S;μf ⊆ C) of genus g to a ([2g − 2 + 2d] + r)-pointed stable curve
(h : D → S;μh ⊆ D) of genus 0.

• Morphisms: a morphism between two objects π : C → D and π′ : C ′ → D′

is a pair of isomorphisms α : C
∼→ C ′ and β : D

∼→ D′ that are compatible
with respective divisors of marked points such that β ◦ π = π′ ◦ α.

We shall denote by Hg,d,r ⊆ Hg,d,r the open substack where the curves C and
D of the profiled simple admissible covering π : C → D are smooth. We shall
refer to Hg,d,r as the r-profiled Hurwitz stack of type (g, d).

Remark 1.8.1. When r = 0, the stack Hg,d,0 may be identified with the stack
Hg,d of Definition 1.4.

Corollary 1.9. Let (g, d, r) be nonnegative integers such that 2g−2+2d+r ≥ 3,
d ≥ 2. Then there exists a natural (1-)morphism Hg,d,r → Ag,d,r which is finite
étale and surjective. In particular, the relative dimension of Hg,d,r over Z[ 1d! ] is
equal to 2g − 2 + 2d+ r − 3 = 2g + 2d+ r − 5.

Proof. One verifies immediately from Theorem 1.5 and Definition 1.8 that the
only difference between the data parametrized by the stack Hg,d,r and the data
parametrized by the stack Ag,d,r lies in the various partial orderings on the
marked points. Thus, it follows immediately [cf. Lemma 1.6] that one has a
natural (1-)morphism Hg,d,r → Ag,d,r that is finite étale and surjective. The
final assertion concerning the relative dimension now follows immediately from
the final portion of Theorem 1.5. This completes the proof.

The pull-back of the canonical log structure on Ag,d,r [cf. Theorem 1.5] via
the finite étale covering

Hg,d,r −→ Ag,d,r

of Corollary 1.9 determines a canonical log structure on Hg,d,r. Denote the
resulting log stack — which we shall refer to as the r-profiled log Hurwitz stack

of type (g, d) — byHlog

g,d,r. One verifies immediately thatHg,d,r may be identified

with the interior of Hlog

g,d,r.

12



Proposition 1.10. Let (g, d, r) be nonnegative integers such that 2g− 2+2d+
r ≥ 3, d ≥ 2.

(i) The normalization H̃g,d,r of Hg,d,r is proper, smooth over Z[ 1d! ]. Moreover,

Hg,d,r may be regarded as an open substack of H̃g,d,r [cf. Remark 1.5.2],

whose complement [in H̃g,d,r], equipped with the reduced induced stack
structure, is a divisor with normal crossings.

(ii) The divisor with normal crossings of (i) determines a log structure on

H̃g,d,r. Moreover, the resulting log stack H̃log
g,d,r is log smooth over Z[ 1d! ],

hence, in particular, log regular.

(iii) There exists a natural (1-)morphism

φ
log

g,d,r : Hlog

g,d,r+1 −→ Hlog

g,d,r

obtained by forgetting the final d sections (respectively, final section) of the
domain curve (respectively, codomain curve) of the covering. Now suppose
further that 2g − 2 + dr ≥ 1. Then there exists a natural (1-)morphism

ψ
log

g,d,r : Hlog

g,d,r −→Mlog

g,dr,

determined by the domain curve of the covering, equipped with its dr or-
dered marked points. Moreover, we have a (1-)commutative diagram

Hlog

g,d,r+1

ψ
log
g,d,r+1−−−−−→ Mlog

g,d(r+1)

φ
log
g,d,r

⏐⏐� ⏐⏐�
Hlog

g,d,r

ψ
log
g,d,r−−−−→ Mlog

g,dr,

where the right-hand vertical arrow is the morphism obtained by forgetting
the final d sections.

(iv) The (1-)morphism φ̃log
g,d,r : H̃log

g,d,r+1 → H̃log
g,d,r induced by the (1-)morphism

φ
log

g,d,r of (iii) is proper, log smooth, representable.

(v) The algebraic stacks Hg,d,r, Hlog

g,d,r, and H̃log
g,d,r are geometrically irreducible

over Z[ 1d! ].

(vi) The (1-)morphism φ̃log
g,d,r : H̃log

g,d,r+1 → H̃log
g,d,r of (iv) is a stable log curve,

hence, in particular, has geometrically reduced, geometrically connected
fibers.

Proof. Since the (1-)morphism Hg,d,r → Ag,d,r is finite étale [cf. Corollary 1.9],
assertions (i) and (ii) follow from the corresponding assertions for Ag,d,r [cf.
Remark 1.5.2].

13



Next, we consider assertion (iii). It follows immediately from the well-known
uniqueness of the contraction morphism that arises by forgetting a marked point
of a pointed stable curve [cf. [Knud], Proposition 2.1] that an r-profiled sim-
ple admissible covering of degree d induces [up to canonical isomorphism] a
morphism from the curve constructed by contracting the final d sections of the
domain curve of the covering to the curve constructed by contracting the fi-
nal section of the codomain curve of the covering. Assertion (iii) now follows
immediately.

Next, we consider assertion (iv). Consider the following (1-)commutative
diagram

H̃log
g,d,r+1 −−−−→ Mlog

0,[2g−2+2d]+r+1

˜φlog
g,d,r

⏐⏐� ⏐⏐�
H̃log

g,d,r −−−−→ Mlog

0,[2g−2+2d]+r,

where the horizontal arrows are the composites of the normalization morphisms
with the (1-)morphisms obtained by sending (π : C → D) �→ D, and the
right-hand vertical arrow is the log smooth morphism obtained by forgetting
the final section. Next, recall that it follows from Theorem 1.5, Remark 1.5.2,
and Corollary 1.9 that the horizontal arrows of the above diagram are log étale.
Since these horizontal arrows are log étale, and the right-hand vertical arrow
of the diagram is log smooth [cf. the geometric properties of this morphism

discussed in [Knud]], it then follows formally that the morphism φ̃log
g,d,r is log

smooth. The properness of φ̃log
g,d,r follows immediately from the properness of

H̃log
g,d,r and H̃log

g,d,r+1 over Z[ 1d! ] [cf. Proposition 1.10, (i)].
Next, we consider the representability portion of assertion (iv). Consider

the following (1-)commutative diagram

H̃log
g,d,r+1 −−−−→ Mlog

g,[(d−1)(2g−2+2d)]+d(r+1) ×M
log

0,[2g−2+2d]+r+1

˜φlog
g,d,r

⏐⏐� ⏐⏐�
H̃log

g,d,r −−−−→ Mlog

g,[(d−1)(2g−2+2d)]+dr ×M
log

0,[2g−2+2d]+r,

where the horizontal arrows are the composites of the normalization morphisms
with the (1-)morphisms obtained by sending (π : C → D) �→ (C,D), and the
right-hand vertical arrow is the morphism obtained by forgetting the final d
sections on the left-hand factor and the final section on the right-hand factor.
Note that the representability of the right-hand vertical arrow is well-known [cf.
[Knud]], and the representability of the horizontal arrows follow immediately
from the various constructions involved [cf. [GCH], the proof of Theorem in
§3.22]. Since the horizontal arrows are representable, and the right-hand vertical
arrow of the diagram is representable, it then follows formally that the morphism
φ̃log
g,d,r is representable.
Next, we consider assertion (v). Since Hg,d,r determines a dense open sub-

stack of Hlog

g,d,r and H̃log
g,d,r on every geometric fiber over Z[ 1d! ] [cf. Remark 1.5.2],
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it suffices to show that Hg,d,r is geometrically irreducible over Z[ 1d! ]. Observe
that when r = 0, the desired geometric irreducibility follows from Remarks
1.4.2 and 1.8.1; when g = 0, d = 2, and r = 1, the desired geometric irre-
ducibility follows immediately by noting that H0,2,1 is isomorphic to a stack
theoretic quotient of Spec Z[ 1d! ]. Now write φg,d,r : Hg,d,r+1 → Hg,d,r for the

(1-)morphism induced by restricting φ̃log
g,d,r to Hg,d,r+1. Observe that it follows

from assertion (iv) that φg,d,r is representable and smooth, hence open. More-
over, it follows from Lemma 1.12 below that φg,d,r is geometrically irreducible.
Thus, we conclude the desired geometric irreducibility for Hg,d,r+1 by applying
induction on r, together with Lemma 1.11, applied to the various morphisms
obtained by base-changing φg,d,r to irreducible Hg,d,r-schemes whose structure
(1-)morphism to Hg,d,r is étale.

Next, we consider assertion (vi). First, we prove that the geometric fibers

of the [proper, by Proposition 1.10, (iv)] (1-)morphism φ̃log
g,d,r are connected.

Since H̃g,d,r+1 is normal, it follows from well-known properties of the Stein
factorization that it suffices to verify that the geometric generic fiber of [the

underlying (1-)morphism on algebraic stacks associated to] φ̃log
g,d,r is connected.

On the other hand, since the (1-)morphism φg,d,r discussed in the proof of
assertion (v) is open and geometrically irreducible, this connectedness follows

from the irreducibility of H̃log
g,d,r and H̃log

g,d,r+1 [cf. Proposition 1.10, (v)], together

with the fact that Hg,d,r+1 is an open dense substack of H̃log
g,d,r+1 [cf. Remark

1.5.2]. This completes the verification of the geometric connectedness of φ̃log
g,d,r.

In light of this geometric connectedness, it follows immediately from the explicit
computation of the local structure of φ̃log

g,d,r discussed in Remark 1.5.2, Corollary

1.9, that φ̃log
g,d,r is a log curve in the sense of [FK], Definition 1.2.

Thus, it follows from [FK], Definition 1.12; [FK], Theorem 4.5, that to verify

that φ̃log
g,d,r is a stable log curve, it suffices to verify that the sheaf of relative

logarithmic differentials of φ̃log
g,d,r is relatively ample, i.e., with respect to φ̃log

g,d,r.
To this end, let us recall the (1-)commutative diagram of the first display in the
proof of assertion (iv). Observe that it follows from Theorem 1.5, Remark 1.5.2,
and Corollary 1.9, that the horizontal arrows of this diagram are log étale, quasi-
finite, and proper. Thus, since both the right-hand vertical arrow of this diagram
and φ̃log

g,d,r are representable [cf. Proposition 1.10, (iv)], it follows formally that

the (1-)morphism H̃log
g,d,r+1 → H̃log

g,d,r ×Mlog
0,[2g−2+2d]+r

Mlog

0,[2g−2+2d]+r+1 induced

by the (1-)commutative diagram of the first display in the proof of assertion
(iv) is finite, log étale. In particular, the desired relative ampleness of the sheaf

of relative logarithmic differentials of φ̃log
g,d,r : H̃log

g,d,r+1 → H̃log
g,d,r follows formally

from the [well-known!] relative ampleness of the sheaf of relative logarithmic

differentials of the stable log curve Mlog

0,[2g−2+2d]+r+1 →Mlog

0,[2g−2+2d]+r.
This completes the proof of Proposition 1.10.
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Lemma 1.11. Let X and Y be topological spaces; f : X → Y a continuous
map satisfying the following conditions:

(i) Y is an irreducible topological space.

(ii) f is an open map.

(iii) For any y ∈ Y , f−1(y) ⊆ X is an irreducible topological space.

Then X is an irreducible topological space.

Proof. Suppose that X is not irreducible. Then there exist non-empty open
subsets U1 and U2 of X such that U1∩U2 is empty. Since, by conditions (i) and
(ii), f(U1) and f(U2) are non-empty open subsets with non-empty intersection,
we conclude that there exists an element y ∈ f(U1) ∩ f(U2) ⊆ Y such that
f−1(y) ⊆ X is not irreducible. But this contradicts condition (iii).

Lemma 1.12. Let k be an algebraically closed field; x : Spec k → Hg,d,r a
geometric point of Hg,d,r corresponding to a profiled simple covering C → P1

k

of degree d from a ([(d− 1)(2g − 2 + 2d)] + dr)-pointed smooth curve (f : C →
Spec k;μf ⊆ C) of genus g to a ([2g − 2 + 2d] + r)-pointed projective line (h :
P1
k → Spec k;μh ⊆ P1

k). Then the geometric fiber of φg,d,r : Hg,d,r+1 → Hg,d,r

over x : Spec k → Hg,d,r is isomorphic to

Z
def
=

{
(C \ μf )×(P1

k\μh) (C \ μf )× · · · ×(P1
k\μh) (C \ μf )

} \ΔZ ,

where the fiber product is the fiber product of d copies of the morphism C \μf →
P1
k \ μh, and ΔZ denotes the union of the various diagonals associated to pairs

of factors in the fiber product. Moreover, Z is the Galois closure of the covering
C \ μf → P1

k \ μh, hence, in particular, irreducible.

Proof. The first assertion follows immediately from the various definitions in-
volved. To verify the final assertion, it suffices to verify that the Galois group of
the Galois closure of the covering C \μf → P1

k \μh is isomorphic to the symmet-
ric group on d letters Sd. On the other hand, this follows immediately from the
well-known elementary fact that any subgroup of Sd that acts transitively on
the set {1, . . . , d} and, moreover, is generated by transpositions is in fact equal
to Sd.

Definition 1.13. Let (g, d, r) be nonnegative integers such that 2g−2+dr ≥ 1,
d ≥ 2 [conditions which imply, as is easily verified, that 2g− 2+2d+ r− 2 ≥ 1];
k an algebraically closed field of characteristic zero.
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(i) We shall denote by

ug,d,r : Cg,d,r → Hg,d,r (respectively, ũlog
g,d,r : C̃logg,d,r → H̃log

g,d,r)

the pull-back of the tautological curve Cg,dr →Mg,dr (respectively, Clogg,dr →
Mlog

g,dr) via ψg,d,r : Hg,d,r →Mg,dr (respectively, ψ̃
log
g,d,r : H̃log

g,d,r →Mlog

g,dr),

where we write ψg,d,r and ψ̃log
g,d,r for the morphisms induced by ψ

log

g,d,r [cf.

Proposition 1.10, (iii)]. We shall refer to Cg,d,r (respectively, C̃logg,d,r) as the

tautological curve over Hg,d,r (respectively, H̃log
g,d,r).

(ii) We shall append a subscript “k” to Hg,d,r, Hg,d,r, Hlog

g,d,r, H̃log
g,d,r, Cg,d,r,

and C̃logg,d,r, as well as to (1-)morphisms between these log stacks, to denote
the result of base-changing to k.

Proposition 1.14. Let (g, d, r) be nonnegative integers such that 2g− 2+2d+
r ≥ 3, d ≥ 2; k an algebraically closed field of characteristic zero.

(i) Suppose further that 2g−2+dr ≥ 1. Then the tautological curve (ũlog
g,d,r)k :

(C̃logg,d,r)k → (H̃log
g,d,r)k is a proper, log smooth (1-)morphism between log

regular log stacks [cf. Definition 1.13, (i), (ii)].

(ii) Suppose further that 2g − 2 + dr ≥ 1. Let s (respectively, slog) be a strict

geometric point of (Hg,d,r)k (respectively, (H̃log
g,d,r)k). For suitable choices

of basepoints, write

ΠCs
def
= π1((Cg,d,r)k ×(Hg,d,r)k s)

(respectively, ΠC
slog

def
= π1((C̃logg,d,r)k ×( ˜Hlog

g,d,r)k
slog));

ΠHg,d,r

def
= π1((Hg,d,r)k) (respectively, Π ˜Hlog

g,d,r

def
= π1((H̃log

g,d,r)k));

ΠCg,d,r
def
= π1((Cg,d,r)k) (respectively, Π˜Clog

g,d,r

def
= π1((C̃logg,d,r)k))

[cf. Definition 1.13, (i), (ii)]. Then, for suitable choices of basepoints, we
have a natural commutative diagram of profinite groups

1 −−−−→ ΠCs −−−−→ ΠCg,d,r −−−−→ ΠHg,d,r
−−−−→ 1

�
⏐⏐� �

⏐⏐� �
⏐⏐�

1 −−−−→ ΠC
slog

−−−−→ Π
˜Clog
g,d,r

−−−−→ Π
˜Hlog
g,d,r

−−−−→ 1,

where the vertical arrows are isomorphisms, and the horizontal sequences
are exact.
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(iii) In the notation of assertion (ii), write

ΠHs

def
= π1((Hg,d,r+1)k ×(Hg,d,r)k s)

(respectively, ΠH
slog

def
= π1((H̃log

g,d,r+1)k ×( ˜Hlog
g,d,r)k

slog)).

Then, for suitable choices of basepoints, we have a natural commutative
diagram of profinite groups

1 −−−−→ ΠHs −−−−→ ΠHg,d,r+1
−−−−→ ΠHg,d,r

−−−−→ 1

�
⏐⏐� �

⏐⏐� �
⏐⏐�

1 −−−−→ ΠH
slog

−−−−→ Π
˜Hlog
g,d,r+1

−−−−→ Π
˜Hlog
g,d,r

−−−−→ 1,

where the vertical arrows are isomorphisms, and the horizontal sequences
are exact.

Proof. Assertion (i) follows immediately from the fact that log smoothness and
properness are stable under base change, together with the fact that a log
smooth scheme over a log regular scheme is log regular [cf. [KK2], Theorem
8.2].

Next, we consider assertions (ii) and (iii). First, we observe that the well-
known functoriality of the étale fundamental group functor gives rise to natural
commutative diagrams of fundamental groups as in the displays of assertions (ii)
and (iii). Next, we observe that, in light of the log regularity portion of assertion
(i), the fact that the vertical arrows of the diagrams of assertions (ii) and (iii)
are isomorphisms follows immediately from the log purity theorem [cf., e.g.,
[ExtFam], Theorem B]. Next, we observe that it follows from assertion (i) and

Proposition 1.10, (vi), that the (1-)morphisms (ũlog
g,d,r)k : (C̃logg,d,r)k → (H̃log

g,d,r)k

and (φ̃log
g,d,r)k : (H̃log

g,d,r+1)k → (H̃log
g,d,r)k are stable log curves. Thus, the exactness

of the horizontal sequences of the diagrams of assertions (ii) and (iii) follows
immediately from the fact that these horizontal sequences may be identified
with suitable pull-backs of an analogous [exact!] sequence in the universal case,
i.e., the sequence in the first display of Theorem M, for suitable “(g, r)”.

This completes the proof of Proposition 1.14.

Remark 1.14.1. Let m > 0 be a positive integer. Then, by applying Proposition
1.14, (ii), (iii), successively, we obtain, for suitable choices of basepoints, natural
commutative diagrams of profinite groups, as follows:

(1succ) If we write ΠHg,d,r+m
→ ΠHg,d,r

and Π
˜Hlog
g,d,r+m

→ Π
˜Hlog
g,d,r

for the arrows

induced by the composites φg,d,r ◦φg,d,r+1 ◦ · · · ◦ φg,d,r+m−1 : Hg,d,r+m →
Hg,d,r and φ̃log

g,d,r ◦ φ̃log
g,d,r+1 ◦ · · · ◦ φ̃log

g,d,r+m−1 : H̃log
g,d,r+m → H̃log

g,d,r, and
ΠHm,s and ΠH

m,slog
for the étale fundamental groups of geometric fibers
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of these composites, then we obtain a commutative diagram of profinite
groups

1 −−−−→ ΠHm,s −−−−→ ΠHg,d,r+m
−−−−→ ΠHg,d,r

−−−−→ 1

�
⏐⏐� �

⏐⏐� �
⏐⏐�

1 −−−−→ ΠH
m,slog

−−−−→ Π
˜Hlog
g,d,r+m

−−−−→ Π
˜Hlog
g,d,r

−−−−→ 1,

where the vertical arrows are isomorphisms, and the horizontal sequences
are exact.

(2succ) First, we observe that since m ≥ 1, [one verifies easily that] it holds
that 2g − 2 + d(r + m) ≥ 1. If we write ΠCg,d,r+m

→ ΠHg,d,r
and

Π
˜Clog
g,d,r+m

→ Π
˜Hlog
g,d,r

for the arrows induced by the composites φg,d,r ◦
φg,d,r+1◦· · ·◦φg,d,r+m−1◦ug,d,r+m : Cg,d,r+m → Hg,d,r and φ̃log

g,d,r◦φ̃log
g,d,r+1◦

· · · ◦ φ̃log
g,d,r+m−1 ◦ ũlog

g,d,r+m : C̃logg,d,r+m → H̃log
g,d,r, and ΠCm,s and ΠC

m,slog
for

the étale fundamental groups of geometric fibers of these composites, then
we obtain a commutative diagram of profinite groups

1 −−−−→ ΠCm,s
−−−−→ ΠCg,d,r+m

−−−−→ ΠHg,d,r
−−−−→ 1

�
⏐⏐� �

⏐⏐� �
⏐⏐�

1 −−−−→ ΠC
m,slog

−−−−→ Π
˜Clog
g,d,r+m

−−−−→ Π
˜Hlog
g,d,r

−−−−→ 1,

where the vertical arrows are isomorphisms, and the horizontal sequences
are exact.

2 Hurwitz-type log configuration spaces

In this section, after defining Hurwitz-type log configuration spaces in Definition
2.2, we examine first properties of various objects related to these spaces [cf.
Lemmas 2.3, 2.5, 2.7] that will be of use when we study the centralizer of the
image of certain geometric monodromy groups in §3 and §4. After examining
these first properties, we recall [cf. Proposition 2.8, Corollary 2.9, and Proposi-
tion 2.10] the existence of simple coverings that satisfy certain conditions; such
existence results will be of use in the proof of Theorem 4.6. We also discuss
[cf. Lemma 2.11] the existence of degenerations of simple coverings that satisfy
certain conditions; this existence result will be of use in the proof of Proposition
3.1.

In this section, we shall apply, without further explanation, the theory and
notational conventions concerning semi-graphs of anabelioids of PSC-type that
are applied in [CbTpI], §6.
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Definition 2.1. (cf. [CmbCsp], Definition 1.1, (ii); [CbTpI], Definition 6.1) Let
Σ be a nonempty set of prime numbers and Π the maximal pro-Σ quotient of
the étale fundamental group of a hyperbolic curve over an algebraically closed
field of characteristic zero [i.e., a pro-Σ surface group — cf. [MT], Definition
1.2]. Then we shall write

OutC(Π)

for the group of outomorphisms of Π which induce bijections on the set of
cuspidal inertia subgroups of Π. We shall refer to an element of OutC(Π) as a
C-admissible outomorphism of Π.

Definition 2.2. Let (g, d, r,m) be nonnegative integers such that 2g−2+2d+
r ≥ 3, d ≥ 2, and m > 0; Slog an fs log scheme over Z[ 1d! ]. We shall refer
to a morphism πlog : C log → Dlog obtained by pulling back a (1-)morphism

Slog → Hlog

g,d —which we shall refer to as the associated classifying (1-)morphism
— as a simple log admissible covering of degree d [cf. Definition 1.4]. We
shall refer to a morphism πlog : C log → Dlog obtained by pulling back a (1-

)morphism Slog → Hlog

g,d,r — which we shall refer to as the associated classifying
(1-)morphism — as an r-profiled simple log admissible covering of degree d [cf.
Definition 1.8]. Let πlog : C log → Dlog be an r-profiled simple log admissible
covering of degree d from a stable log curve f log : C log → Slog of genus g to a
stable log curve hlog : Dlog → Slog of genus 0. Then we shall refer to as the
m-th Hurwitz-type log configuration space of πlog : C log → Dlog the log scheme
[over Slog]

C log
m

def
= Slog ×

˜Hlog
g,d,r

H̃log
g,d,r+m,

where Slog → H̃log
g,d,r is the (1-)morphism determined [since Slog is assumed to be

an fs log scheme] by the classifying morphism associated to the r-profiled simple

log admissible covering under consideration, and the (1-)morphism H̃log
g,d,r+m

→ H̃log
g,d,r is given by forgetting the final dm sections (respectively, final m

sections) of the domain curve (respectively, codomain curve) of the covering.

Lemma 2.3. (cf. [CbTpI], Lemma 6.2) Let (g, d, r,m) be nonnegative integers
such that 2g−2+2d+r ≥ 3, d ≥ 2, m > 0; ΣF ⊆ Primes a nonempty set of prime

numbers; k an algebraically closed field of characteristic zero; Slog def
= (Spec k)log

the log scheme obtained by equipping Spec k with the log structure given by the
fs chart N → k that maps 1 → 0; πlog : C log → Dlog an r-profiled simple log
admissible covering of degree d from a stable log curve f log : C log → Slog of
genus g to a stable log curve hlog : Dlog → Slog of genus 0. Write

C log
m
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for the m-th Hurwitz-type log configuration space of the r-profiled simple log
admissible covering πlog : C log → Dlog [cf. Definition 2.2]; ΠB for the kernel
of the natural [outer] surjection π1(C

log
m ) → π1(S

log); Π∗T for the kernel of the

natural [outer] surjection π1(C
log
m ×

˜Hlog
g,d,r+m

C̃logg,d,r+m) � π1(S
log) [cf. Definition

1.13, (i)]; Π∗F for the kernel of the natural [outer] surjection Π∗T � ΠB induced

by the projection C log
m ×

˜Hlog
g,d,r+m

C̃logg,d,r+m → C log
m ; ΠF for the the maximal pro-ΣF

quotient of Π∗F; ΠT for the quotient of Π∗T by the kernel of the natural surjection
Π∗F � ΠF. Thus, we have a natural exact sequence of profinite groups

1 −→ ΠF −→ ΠT −→ ΠB −→ 1,

which determines an outer representation

ρm : ΠB −→ Out(ΠF).

Then the following hold:

(i) The isomorphism class of the exact sequence of profinite groups

1 −→ ΠF −→ ΠT −→ ΠB −→ 1

depends only on (g, d, r,m) and the set ΣF, i.e., if 1 → Π•F → Π•T →
Π•B → 1 is the exact sequence “1 → ΠF → ΠT → ΠB → 1” associated,
with respect to the same (g, d, r,m) and ΣF, to another r-profiled simple
log admissible covering of degree d from a stable log curve of genus g to
a stable log curve of genus 0, then there exists a commutative diagram of
profinite groups

1 −−−−→ ΠF −−−−→ ΠT −−−−→ ΠB −−−−→ 1

�
⏐⏐� �

⏐⏐� �
⏐⏐�

1 −−−−→ Π•F −−−−→ Π•T −−−−→ Π•B −−−−→ 1,

where the vertical arrows are isomorphisms which may be chosen to arise
scheme-theoretically [i.e., via specialization and generization], hence, in
particular, to be compatible with the respective cuspidal subgroups of ΠF

and Π•F [cf. Lemma 2.3, (ii)], as well as with the orderings on the ordered

cusps [cf. Definition 1.7] of the fibers of C̃logg,d,r+m → H̃log
g,d,r+m under

consideration..

(ii) ΠF is the maximal pro-ΣF quotient of the étale fundamental group of a
hyperbolic curve over an algebraically closed field of characteristic zero
[i.e., a pro-ΣF surface group — cf. [MT], Definition 1.2].

(iii) The outer representation ρm : ΠB → Out(ΠF) factors through the closed
subgroup OutC(ΠF) ⊆ Out(ΠF) [cf. Definition 2.1].
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Proof. Assertion (i) follows immediately by considering a suitable specialization
isomorphism, i.e., by varying the basepoint “slog” in the exact sequences of
Proposition 1.14, (ii) [where we take “r” to be r + m and recall the easily
verified fact that, since m ≥ 1, it holds that 2g − 2 + d(r + m) ≥ 1]; Remark
1.14.1, (1succ). Assertion (ii) follows immediately from assertion (i) and the
various definitions involved. Assertion (iii) follows immediately from the various
definitions involved.

Definition 2.4. (cf. [CbTpI], Definition 6.3) We apply the notational conven-
tions of Lemma 2.3 in the case where

m = 1, 2g − 2 + dr ≥ 1.

Let x ∈ C1(k) be a k-valued point of the underlying scheme C1 of C log
1 =

Slog ×
˜Hlog
g,d,r

H̃log
g,d,r+1 [cf. Definition 2.2]. Write

C log
∗

def
= Slog ×

˜Hlog
g,d,r

C̃logg,d,r

for the stable log curve [cf. Proposition 1.10, (vi)] determined by the (1-

)morphism ũlog
g,d,r : C̃logg,d,r → H̃log

g,d,r of Definition 1.13, (i), and the (1-)morphism

Slog → H̃log
g,d,r determined [since Slog is an fs log scheme] by the classifying

(1-)morphism Slog → Hlog

g,d,r of the r-profiled simple log admissible covering

πlog : C log → Dlog;

C log
x

def
= xlog ×

˜Hlog
g,d,r+1

C̃logg,d,r+1

for the stable log curve [cf. Proposition 1.10, (vi)] over xlog def
= x ×C1

C log
1

determined by the (1-)morphism ũlog
g,d,r+1 : C̃logg,d,r+1 → H̃log

g,d,r+1 of Definition
1.13, (i). Thus, we have natural contraction morphisms

C log
x → C log

∗ ← C log

of stable log curves over Slog.

(i) We shall denote by

G∗
the semi-graph of anabelioids of pro-Primes PSC-type determined by the
stable log curve C log

∗ ; by

Gx
the semi-graph of anabelioids of pro-ΣF PSC-type determined by the sta-
ble log curve C log

x ; by ΠG∗ , ΠGx the [pro-Primes, pro-ΣF] fundamen-
tal groups of G∗, Gx, respectively. Thus, we have a natural Im(ρ1) (⊆
Out(ΠF))-torsor of outer isomorphisms
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ΠF
∼−→ ΠGx .

Let us fix an isomorphism ΠF
∼→ ΠGx

that belongs to this collection of
isomorphisms.

(ii) Let 1 ≤ i ≤ d be an integer. Then let us observe that the (dr + i)-th
tautological section Mg,d(r+1) ↪→ Mg,d(r+1)+1 of the tautological curve

Mg,d(r+1)+1 → Mg,d(r+1) determines, by pull-back via the composite of
natural (1-)morphisms

C log
1 → H̃log

g,d,r+1

˜ψlog
g,d,r+1→ Mlog

g,d(r+1)

[cf. Proposition 1.10, (iii); the fact that 2g − 2 + d(r + 1) ≥ 1], a section
of the underlying morphism of schemes of the natural projection mor-

phism C log
1 ×

˜Hlog
g,d,r+1

C̃logg,d,r+1
∼→ C log

1 ×Mlog
g,d(r+1)

Mlog

g,d(r+1)+1 → C log
1 [cf.

Definition 1.13, (i)]. Write

Di

for the image in the underlying scheme of

C log
1 ×

˜Hlog
g,d,r+1

C̃logg,d,r+1
∼→ C log

1 ×Mlog
g,d(r+1)

Mlog

g,d(r+1)+1

of this section. Write

pri : C1 −→ C∗

for the composite of natural (1-)morphisms

C1
∼→ S ×

˜Hg,d,r
H̃g,d,r+1 → S ×Mg,dr

Mg,d(r+1) → C∗,

where S, C∗ are the underlying schemes of Slog, C log
∗ [cf. Proposition 1.10,

(vi)]; the final morphism is the morphism determined by the (dr + i)-th
marked point of the tautological pointed stable curve parametrized by
Mg,d(r+1). One verifies easily that pri : C1 −→ C∗ is surjective.

(iii) Denote by

cFDi,x
∈ Cusp(Gx)

the cusp of Gx [i.e., the cusp of the geometric fiber of C log
1 ×

˜Hlog
g,d,r+1

C̃logg,d,r+1 → C log
1 over xlog] determined by the divisor Di [which lies inside

the underlying scheme of C log
1 ×

˜Hlog
g,d,r+1

C̃logg,d,r+1] of (ii). For v ∈ Vert(G∗)
(respectively, c ∈ Cusp(G∗)), denote by
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vFx ∈ Vert(Gx) (respectively, cFx ∈ Cusp(Gx))

the vertex (respectively, cusp) of Gx that corresponds naturally to v ∈
Vert(G∗) (respectively, c ∈ Cusp(G∗)) [cf. the notational conventions of
[NodNon], Definition 1.1, (i)].

(iv) Let y ∈ C∗(k) be a k-valued point of C∗. Let e ∈ Edge(G∗), v ∈ Vert(G∗),
S ⊆ VCN(G∗), and z ∈ VCN(G∗) [cf. the notational conventions of
[NodNon], Definition 1.1, (i), (iii)]. Then we shall say that y lies on e
if the image of y is the cusp or node corresponding to e ∈ Edge(G∗). We
shall say that y lies on v if y does not lie on any edge of G∗, and, moreover,
the image of y is contained in the irreducible component corresponding to
v ∈ Vert(G∗). We shall write y � S if y lies on some s ∈ S. We shall
write y � z if y � {z}.

Lemma 2.5. (cf. [CbTpI], Lemma 6.4) In the notation of Definition 2.4, let
x, x′ ∈ C1(k) be k-valued points of C1. Then the following hold:

(i) The isomorphism ΠGx

∼→ ΠGx′ obtained by forming the composite of the

isomorphisms ΠGx

∼← ΠF
∼→ ΠGx′ [cf. Definition 2.4, (i)] is group-

theoretically cuspidal [cf. [CmbGC], Definition 1.4, (iv)].

(ii) The injection Cusp(G∗) ↪→ Cusp(Gx) given by mapping c �→ cFx determines
a bijection

Cusp(G∗) ∼→ Cusp(Gx) \ {cFDi,x
(1 ≤ i ≤ d)}

[cf. Definition 2.4, (iii)]. Moreover, if we regard Cusp(G∗) as a subset of
each of the sets Cusp(Gx), Cusp(Gx′) by means of the above injections, then
the bijection Cusp(Gx) ∼→ Cusp(Gx′) determined by the group-theoretically
cuspidal isomorphism ΠGx

∼→ ΠGx′ of (i) maps cFDi,x
�→ cFDi,x′ (1 ≤ i ≤

d) and induces the identity automorphism on Cusp(G∗). Thus, in the
remainder of this paper, we shall omit the subscript “x” from the notation
“cFx” and “cFDi,x

”.

(iii) Suppose that the log curve C log is irreducible. [Thus, we have a natural
isomorphism C

∼→ C∗.] Then the injection Vert(G∗) ↪→ Vert(Gx) given
by mapping v �→ vFx [cf. Definition 2.4, (iii)] is bijective if and only if

xi
def
= pri(x) � Vert(G∗) (1 ≤ i ≤ d) [cf. Definition 2.4, (ii),(iv)], and the

xi (1 ≤ i ≤ d) are distinct elements of C∗(k)
∼← C(k).

(iv) Suppose that C log is a smooth log curve. [Thus, we have a natural iso-
morphism C

∼→ C∗.] Let (i, j) be integers satisfying 1 ≤ i < j ≤ d.
Write v ∈ Vert(G∗) for the unique element of Vert(G∗). Suppose that
pri(x) = prj(x) ∈ C∗(k). Then Gx satisfies the following conditions:
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• The complement of the image of Vert(G∗) in Vert(Gx) is a set of
cardinality one whose unique element

vFnew,x ∈ Vert(Gx) \Vert(G∗)
is of type (0, 3). Moreover, C(vFnew,x) = {cFDi

, cFDj
} [cf. Lemma 2.5,

(ii)].

• N (vFx ) = Node(Gx) = N (vFnew,x) is a set of cardinality one.

• C(vFx ) \ C(v) = {cFDk
(k �= i, j)}.

(v) Suppose that C log is a smooth log curve. [Thus, we have a natural iso-
morphism C

∼→ C∗.] Let l be an integer satisfying 1 ≤ l ≤ r. Write

v ∈ Vert(G∗) for the unique element of Vert(G∗). Suppose that xi
def
=

pri(x) � Cusp(G∗) for some i ∈ {1, . . . , d} [or, equivalently, for all
i ∈ {1, . . . , d}], and πlog(xi) [cf. Lemma 2.3] is the l-th cusp of Dlog.
Then Gx satisfies the following conditions:

• The complement of the image of Vert(G∗) in Vert(Gx) is a set of
cardinality d, each of whose elements is of type (0, 3). Let j be an
integer satisfying 1 ≤ j ≤ d. If we write

vFnew,j,x ∈ Vert(Gx) \Vert(G∗)
for the unique element of Vert(Gx) \ Vert(G∗) that abuts to cFDj

[cf.

Lemma 2.5, (ii)], then C(vFnew,j,x) = {cFl,j , cFDj
}, where we write cl,j

for the ((l − 1)d+ j)-th cusp of G∗ [cf. Definition 2.4, (iii)].

• Let j be an integer satisfying 1 ≤ j ≤ d. N (vFnew,j,x) is a set of
cardinality one. If we write

eFj ∈ N (vFnew,j,x)

for the unique element of N (vFnew,j,x), then N (vFx ) = Node(Gx) =

{eF1 , eF2 , . . . , eFd }.
• C(vFx )# = d(r − 1).

Proof. Assertion (i) follows immediately from the fact that the cuspidal sub-

groups in question arise from divisors of the underlying scheme of C log
1 ×

˜Hlog
g,d,r+1

C̃logg,d,r+1. Assertions (ii), (iii), (iv), and (v) follow immediately from the various
definitions involved. This completes the proof.

Definition 2.6. (cf. [CbTpI], Definition 6.5) In the notation of Definition 2.4:

(i) Write

CuspF(G∗) def
= Cusp(G∗) � {cFDi

(1 ≤ i ≤ d)}
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[cf. Definition 2.4, (iii); Lemma 2.5, (ii)].

(ii) Let α ∈ OutC(ΠF) be a C-admissible outomorphism of ΠF [cf. Definition
2.1; Lemma 2.3, (ii)]. Then it follows immediately from Lemma 2.5, (i),
(ii), that the automorphism of CuspF(G∗) [cf. Definition 2.6, (i)] obtained
by conjugating the natural action of α on Cusp(Gx) by the natural bijec-
tion CuspF(G∗) ∼→ Cusp(Gx) implicit in Lemma 2.5, (ii), does not depend
on the choice of x. We shall refer to this automorphism of CuspF(G∗)
as the automorphism of CuspF(G∗) determined by α. Thus, we have a
natural homomorphism OutC(ΠF)→ Aut(CuspF(G∗)).

(iii) For c ∈ CuspF(G∗) [cf. Definition 2.6, (i)], we shall refer to a closed
subgroup of ΠF obtained as the image — via the fixed isomorphism ΠGx

∼←
ΠF of Definition 2.4, (i) — of a cuspidal subgroup of ΠGx associated to
the cusp of Gx corresponding to c ∈ CuspF(G∗) as a cuspidal subgroup of
ΠF associated to c ∈ CuspF(G∗). Note that it follows immediately from
Lemma 2.5, (ii), that the ΠF-conjugacy class of a cuspidal subgroup of ΠF

associated to c ∈ CuspF(G∗) depends only on c ∈ CuspF(G∗), i.e., does
not depend on the choice of x or on the choices of isomorphisms made in
Definition 2.4, (i).

Lemma 2.7. (cf. [CbTpI], Lemma 6.7) In the notation of Definition 2.4, let

H ⊆ ΠB be an open subgroup of ΠB, α̃ an automorphism of ΠT|H def
= ΠT×ΠB

H
over H [i.e., an automorphism that preserves and induces the identity automor-
phism on the quotient ΠT|H � H], αF ∈ Out(ΠF) the outomorphism of ΠF

determined by the restriction α̃|ΠF
of α̃ to ΠF ⊆ ΠT|H , ΠcFDi

⊆ ΠF (1 ≤ i ≤ d)

a cuspidal subgroup of ΠF associated to cFDi
∈ CuspF(G∗) [cf. Definition 2.6,

(i), (iii)], and Nd ⊆ ΠF the normal closed subgroup of ΠF topologically normally
generated by the ΠcFDi

, where i = 1, . . . , d. Then the following hold:

(i) Suppose that, for each i = 1, . . . , d, α̃ preserves the ΠF-conjugacy class
of ΠcFDi

⊆ ΠF. Then the outomorphism of ΠF/Nd induced by α̃ is the

identity outomorphism. If, moreover, αF is C-admissible [cf. Definition
2.1; Lemma 2.3, (ii)], then the automorphism of CuspF(G∗) induced by
αF [cf. Definition 2.6, (ii)] is the identity automorphism.

(ii) Suppose that αF is C-admissible, and that C log is a smooth log curve. Then
it holds that αF ∈ Aut(Gx) (⊆ Out(ΠGx

)
∼← Out(ΠF)). If, moreover, for

each i = 1, . . . , d, α̃ preserves the ΠF-conjugacy class of ΠcFDi

⊆ ΠF, then

αF ∈ Aut|grph|(Gx) ⊆ Aut(Gx).
Proof. First, we verify assertion (i). By replacing α̃ by a suitable ΠF-conjugate,
we may assume that α̃ preserves ΠcF1

⊆ ΠF. Since the decomposition group

D ⊆ ΠT|H of ΠT|H associated to the divisor D1 of C log
1 ×

˜Hlog
g,d,r+1

C̃logg,d,r+1 [cf.
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Definition 2.4, (ii)] is equal to NΠT|H (ΠcF1
) [cf. [CmbGC], Proposition 1.2, (i),

(ii)], α̃ preserves the subgroup D ⊆ ΠT|H . Write

prF : ΠT � ΠF/Nd

for the surjection induced by the projection to the fiber component, i.e., the
composite

C log
1 ×

˜Hlog
g,d,r+1

C̃logg,d,r+1 → C log
1 ×

˜Hlog
g,d,r

C̃logg,d,r → Slog ×
˜Hlog
g,d,r

C̃logg,d,r = C log
∗

[cf. the contraction morphism C log
x → C log

∗ discussed at the beginning of Def-
inition 2.4]. Note that the restriction of prF to ΠF is the natural surjection
ΠF � ΠF/Nd. Since the morphism pr1 : C1 −→ C∗ is surjective [cf. Definition
2.4, (ii)], and NΠT

(ΠcF1
) may be interpreted as the decomposition group asso-

ciated to D1, it follows immediately that the restriction of prF to NΠT(ΠcF1
) is

open. Now we have a commutative diagram

1 −−−−→ ΠcF1
−−−−→ NΠT

(ΠcF1
) −−−−→ NΠT

(ΠcF1
)/ΠcF1

−−−−→ 1⏐⏐� ⏐⏐� �
⏐⏐�

1 −−−−→ ΠF −−−−→ ΠT −−−−→ ΠB −−−−→ 1⏐⏐� prF

⏐⏐�
ΠF/Nd ΠF/Nd,

where the arrows ΠcF1
→ ΠF and NΠT(ΠcF1

) → ΠT are the natural inclusions;

the arrow ΠF → ΠF/Nd is the natural surjection; [one verifies immediately that]

the composite NΠT(ΠcF1
) → ΠT

prF→ ΠF/Nd factors through the natural surjec-

tion NΠT
(ΠcF1

) � NΠT
(ΠcF1

)/ΠcF1
. Since the restriction of prF to NΠT

(ΠcF1
)

is open, and α̃ is an automorphism of ΠT|H over H, we thus conclude that α̃
induces the identity automorphism on some normal open subgroup J ⊆ ΠF/Nd

of ΠF/Nd. Since 2g − 2 + dr ≥ 1 [cf. Definition 2.4], ΠF/Nd is slim [cf., e.g.,
[MT], Proposition 1.4], hence induces an injection ΠF/Nd ↪→ Aut(J). The func-
toriality of this injection thus implies that α̃ induces the identity automorphism
on ΠF/Nd. The latter part of assertion (i) follows immediately from the for-
mer part of assertion (i), together with the uniqueness of the cusp associated
to a given cuspidal inertia subgroup [cf. [CmbGC], Proposition 1.2, (i)]. This
completes the proof of assertion (i).

Next, we prove assertion (ii). Since α̃ is an automorphism of ΠT|H over H,
it holds that αF ∈ ZOut(ΠF)(ρ1(H)) ⊆ Out(ΠF). Next, observe that each of the

stable log curves C log
1 , C log

x over Slog admits at least one cusp. Thus, the fact
that αF ∈ Aut(Gx) follows immediately by applying Theorem A of [NodNon] —
or, alternatively, [CmbGC], Corollary 2.7, (iii) [cf. the fact that C log is a smooth
log curve; [NodNon], Remark 2.4.2] — to any cuspidal inertia group of H. Now
suppose, moreover, that α̃ preserves the ΠF-conjugacy class of ΠcFDi

⊆ ΠF for

each i = 1, . . . , d. Then it follows from assertion (i) that αF ∈ Aut(Gx) fixes the

27



cusps of Gx. Since C log is a smooth log curve, it follows that for any vertex v ∈
Vert(Gx) \Vert(G∗) of Vert(Gx), there exists an integer i ∈ {1, . . . , d} satisfying
cFDi

∈ C(v) [cf. Lemma 2.5, (iii), (iv), (v)]. In particular, we conclude from the
detailed descriptions of Lemma 2.5, (iv), (v), that αF fixes the vertices of Gx, as
well as the branches of nodes of Gx. Thus, αF ∈ Aut|grph|(Gx) ⊆ Aut(Gx). This
completes the proof of assertion (ii).

The following result, which is a variant of [Ful], Proposition 8.1, asserts the
existence of coverings that satisfy certain conditions. The proof is similar to
[Ful], Proposition 8.1.

Proposition 2.8. Let E be a smooth projective curve of genus g over an alge-
braically closed field k of characteristic zero such that g ≤ 1; (i, d) nonnegative
integers such that 0 ≤ i ≤ d − 1 ≥ g; x1, . . . , xi, xi+1 i + 1 distinct points on
E. Then there exists a finite morphism f : E → P1

k of degree d satisfying the
following conditions:

• x1, . . . , xi, xi+1 lie over a single point y of P1
k, and the ramification index

at xi+1 is d− i [which implies that the ramification index at x1, . . . , xi is
1, and f−1(y) = {x1, . . . , xi, xi+1}].

• f has at most simple ramification except possibly over y.

Proof. Since the assertion in the case where d = 1 is immediate, we may as-
sume without loss of generality that d ≥ 2. Write S for the d-fold symmetric
product of E, ξ ∈ S(k) for the point determined by the collection of points
{x1, . . . , xi+1}, where we take the multiplicity of x1, . . . , xi+1 to be 1 and the
multiplicity of xi+1 to be d− i. When d ≥ 3, define morphisms

α1 : Ed−2 −→ S, α2 : Ed−2 −→ S

by the formulas

α1(P1, P2, . . . , Pd−2) = 2P1 + 2P2 + · · ·+ Pd−2

α2(P1, P2, . . . , Pd−2) = 3P1 + P2 + · · ·+ Pd−2.

Write T
def
= Im(α1) ∪ Im(α2) when d ≥ 3 and T

def
= ∅ when d = 2. Note that

dim T ≤ d− 2. Write

φ : S −→ Picd(E)

for the morphism obtained by assigning to a collection of d points of E the
line bundle on E determined by the divisor given by the sum of the d points,

M def
= φ(ξ). For any L ∈ Picd(E), write SL

def
= φ−1(L), TL def

= φ−1(L)∩T . Thus,
SL may be naturally identified with the projective space associated to the dual
of the k-vector space H0(E,L). Since d − 1 ≥ 1 > 0 ≥ 2g − 2, the Riemann-

Roch theorem thus implies that dim SL = d − g, and LP
def
= H0(E,L(−P )) �

H0(E,L) for any P ∈ E(k) and L ∈ Picd(E). Next, let us observe that when
d ≥ 3, the composites T ◦α1 and T ◦α2 are surjective. Thus, since dim T ≤ d−2,
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and dim Picd(E) = g ≤ 1, we conclude that dim TL ≤ d − g − 2, i.e., TL is of
codimension ≥ 2 in SL. In particular, there exists a line in the projective space
SM that contains ξ ∈ SM(k) ⊆ S(k) and avoids TM \ (TM ∩ {ξ}) ⊆ SM. Such
a line determines a morphism f : E → P1

k as desired.

Corollary 2.9. Let (g, d) be nonnegative integers such that g ≤ 1, d ≥ g + 1,
and 2g + d ≥ 3; k an algebraically closed field of characteristic zero. Then,
(ψg,d,1)k : (Hg,d,1)k → (Mg,d)k [cf. Definition 1.13, (i), (ii)] is surjective.

Proof. This follows immediately from Proposition 2.8, where we take “i” to be
d− 1, together with the various definitions involved.

Proposition 2.10. Let (g, d) be nonnegative integers such that d ≥ g
2 + 1,

g ≥ 2; k an algebraically closed field of characteristic zero. Then the image
of (ψg,d,0)k : (Hg,d,0)k → (Mg,0)k [cf. Definition 1.13, (i), (ii)] is dense in
(Mg,0)k.

Proof. Since (Hg,d,0)k is dense in (H̃log
g,d,0)k, it suffices to show that the image of

(ψ̃log
g,d,0)k : (H̃log

g,d,0)k → (Mlog

g,0)k [cf. Definition 1.13, (i), (ii)] is dense in (Mlog

g,0)k.
Let C be a proper smooth curve of genus g over k. Since d ≥ g

2 + 1, it follows
from [ACGH], Chapter VII, Theorem 2.3, that there exists a finite morphism
π : C → P1

k of degree d′ ≤ d. By constructing from π a similar degenerate
covering to the covering illustrated in [GCH], Pictorial Appendix, Species 3B∗

[which corresponds to the case where d′ = d− 1; cf. also Remark 2.10.1 below],
we obtain a degenerate covering π′ : C ′ → D′ of degree d, where the contraction
[obtained by forgetting the ramification points] of C ′ is isomorphic to C, and the
genus of D′ is equal to zero. When the covering π′ : C ′ → D′ is not simple, by
constructing from π′ similar degenerate coverings to the coverings illustrated in
[GCH], Pictorial Appendix, Species 1, 2, we obtain a degenerate simple covering
π′′ : C ′′ → D′′ of degree d, where the contraction [obtained by forgetting the
ramification points] of C ′′ is isomorphic to C, and the genus of D′′ is equal to
zero. This completes the proof.

Remark 2.10.1. Here, we take the opportunity to point out a minor error in
the illustration of [GCH], Pictorial Appendix, Species 3B∗: The lowermost
irreducible component on the right-hand side of the domain curve of the covering
[i.e., the irreducible component marked by the phrase “one copy of P1”] should
be deleted.

Lemma 2.11. In the notation of Definition 2.4 in the case where

d ≥ g + 1, g ≥ 2, r = 0,
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and we take the simple log admissible covering

πlog : C log −→ Dlog

to be the log admissible covering of degree d obtained by gluing together along
the respective points “y” two copies of the covering constructed in Proposition
2.8, where we take “i” to be g and “g” to be 0. [Thus, C log is of genus g; Dlog

is of genus 0.] Write Vert(G∗) = {w,w′}. Then, for any g-tuple of integers
i1, . . . , ig such that 1 ≤ i1 < · · · < ig ≤ d, there exists a point x ∈ C1(k)
whose associated semi-graph of anabelioids Gx [cf. Definition 2.4, (i)] satisfies
the following conditions:

• Vert(Gx) = {wF
x , w

′F
x , vF1 , v

F
2 , . . . , v

F
g+1};

• Node(Gx) = {eF1 , eF2 , . . . , eFg+1, e
′F
1 , e′F2 , . . . , e′Fg+1};

• N (wF
x ) = {eF1 , eF2 , . . . , eFg+1}, N (w′Fx ) = {e′F1 , e′F2 , . . . , e′Fg+1}, and C(wF

x )
# =

C(w′Fx )# = 0;

• for t = 1, . . . , g + 1, N (vFt ) = {eFt , e′Ft }; for t = 1, . . . , g, C(vFt ) = {cFDit
}

[cf. Lemma 2.5, (ii)];

• C(vFg+1) = {cFDj1
, . . . , cFDjd−g

}, where 1 ≤ j1 < · · · < jd−g ≤ d are the d− g

integers such that {1, · · · , d} = {i1, . . . , ig} ∪ {j1, . . . , jd−g};
• for t = 1, . . . , g, vFt is of type (0, 3); vFg+1 is of type (0, d− g + 2).

Proof. By taking x ∈ C1(k) to be a point that corresponds to a 1-profiled simple
admissible covering such that the section “σ1” of Definition 1.7 corresponds
to the point “y” that appears in the definition of πlog : C log → Dlog, one
verifies immediately that one may choose x so that the required conditions are
satisfied.

3 Triviality of certain outomorphisms

In this section, our goal is to prove the following Proposition 3.1.

Proposition 3.1. In the notation of Definition 2.4, for i = 1, . . . , d, let ΠcFDi

⊆
ΠF be a cuspidal subgroup of ΠF associated to cFDi

∈ CuspF(G∗) [cf. Definition
2.6, (i), (iii)], H ⊆ ΠB an open subgroup of ΠB, and α ∈ ZOutC(ΠF)(ρ1(H)).
Suppose that, for each i = 1, . . . , d, α preserves the ΠF-conjugacy class of
ΠcFDi

⊆ ΠF. When r = 0 [so g ≥ 2], suppose that d ≥ g + 1, and that

α ∈ Aut|{w
F}|(G1,2,...,g) [cf. Definition 3.3, (iii)], relative to some fixed iso-

morphism between the respective exact sequences “1 → Π•F → Π•T → Π•B → 1”
of the sort that appears in the discussion at the beginning of Definition 3.3.
Then α is the identity outomorphism.
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Before proving Proposition 3.1, we discuss certain preparatory aspects of the
situation under consideration in Definition 3.2, Definition 3.3, Lemma 3.4, and
Lemma 3.5.

Definition 3.2. In the notation of Proposition 3.1, let Ns ⊆ ΠF (1 ≤ s ≤
d) be the normal closed subgroup of ΠF topologically normally generated by
{ΠcFDi

(d− s+ 1 ≤ i ≤ d)}, αs ∈ OutC(ΠF/Ns) an outomorphism of ΠF/Ns in-

duced by α ∈ ZOutC(ΠF)(ρ1(H)). Write N0 = {1} ⊆ ΠF for the trivial subgroup

of ΠF and α0
def
= α. Note that it follows immediately from Lemma 2.5, (i), that

Ns (⊆ ΠF ⊆ ΠT) is normal in ΠT [cf. Lemma 2.3].

Definition 3.3. In the following, we shall consider, relative to fixed numerical
data g, d, r, various new choices of the data “πlog : C log → Dlog”, “x ∈ C1(k)”
considered in Definition 2.4. The objects “1 → Π•F → Π•T → Π•B → 1” [cf.
Lemma 2.3, (i)] that arise from these new choices will then be thought as being
related to the objects 1 → ΠF → ΠT → ΠB → 1 that arise from the original
given data of Definition 2.4 [i.e., the data considered, e.g., in Proposition 3.1]
by means of the vertical isomorphisms discussed in Lemma 2.3, (i).

(i) Suppose that C log, x ∈ C1(k), and i, j are as in Lemma 2.5, (iv). Let s
be an integer satisfying 0 ≤ s ≤ d− j. Then we shall write

Gi,j

for the resulting semi-graph of anabelioids of pro-ΣF PSC-type “Gx” of
Definition 2.4, (i);

Gi,j,s def
= (Gi,j)•{cFDm

(d−s+1≤m≤d)}

[cf. [CbTpI], Definition 2.4];

vFi,j,s, v
F
new,i,j,s ( �= vFi,j,s)

[cf. the assumption that 0 ≤ s ≤ d−j] for the vertices of Gi,j,s determined
by the vertices vFx , v

F
new,x [cf. Lemma 2.5, (iv)] of Gi,j .

(ii) Suppose that C log, x ∈ C1(k), and l, j are as in Lemma 2.5, (v). Let s be
an integer satisfying 0 ≤ s ≤ d− j. Then we shall write

Gl

for the resulting semi-graph of anabelioids of pro-ΣF PSC-type “Gx” of
Definition 2.4, (i);
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Gl,s def
= (Gl)•{cFDm

(d−s+1≤m≤d)}

[cf. [CbTpI], Definition 2.4];

vl,s, vl,j,s ( �= vl,s), el,j,s, cl,j,s

[cf. the assumption that 0 ≤ s ≤ d − j] for the vertices, closed edges,
and cusps of Gl,s determined by the vertices, closed edges, and cusps vFx ,
vFnew,j,x, e

F
j , and cFl,j [cf. Lemma 2.5, (v)] of Gl.

(iii) Assume that d ≥ g + 1, g ≥ 2, r = 0. Suppose that C log, x ∈ C1(k), and
it (1 ≤ t ≤ g) are as in Lemma 2.11. Suppose further that it = t (1 ≤ t ≤
g). Then we shall write

G1,2,...,g

for the resulting semi-graph of anabelioids of pro-ΣF PSC-type “Gx” of
Definition 2.4, (i). In the remainder of the present §3, we shall omit the
subscript “x” from the notation wF

x , w
′F
x [cf. Lemma 2.11].

Lemma 3.4. In the notation of Definition 2.6, Definition 3.2, and Definition
3.3, (i), the following hold:

(i) Fix i, j. Then there exists a collection of “scheme-theoretic” [in the sense
discussed in Lemma 2.3, (i)] outer isomorphisms

{
ΠF/Ns

∼→ ΠGi,j,s

}
s=0,...,d−j

that satisfies the following conditions for each s ∈ {0, . . . , d− j − 1}:
• (Commutativity) We have a natural commutative diagram

ΠF/Ns
∼−−−−→ ΠGi,j,s⏐⏐� ⏐⏐�

ΠF/Ns+1
∼−−−−→ ΠGi,j,s+1

,

where the vertical arrows are the natural outer surjections.

• (Injectivity for cuspidal subgroups) Let t be an integer satisfying 1 ≤
t ≤ d− s− 1. Then the composite

ΠcFDt
→ ΠGi,j,s

∼← ΠF/Ns � ΠF/Ns+1

[where the first and third arrows are the natural outer homomor-
phisms] is injective.
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• (Injectivity for non-new verticial subgroups) Suppose that j = d− s.
The composite

ΠvF
i,j,s

→ ΠGi,j,s

∼← ΠF/Ns � ΠF/Ns+1

[where the first and third arrows are the natural outer homomor-
phisms] is injective.

• (Injectivity for new verticial subgroups) Let j be an integer satisfying
i < j ≤ d− s− 1. Then the composite

ΠvF
new,i,j,s

→ ΠGi,j,s

∼← ΠF/Ns � ΠF/Ns+1

[where the first and third arrows are the natural outer homomor-
phisms] is injective.

(ii) The images of the above composites are commensurably terminal.

Proof. Assertion (i) follows immediately from the various definitions involved.
Assertion (ii) follows immediately from assertion (i), together with [CmbGC],
Proposition 1.2, (ii).

Lemma 3.5. In the notation of Definition 2.6, Definition 3.2, and Definition
3.3, (ii), the following hold:

(i) Fix l. Then there exists a collection of “scheme-theoretic” [in the sense
discussed in Lemma 2.3, (i)] outer isomorphisms

{
ΠF/Ns

∼→ ΠGl,s

}
s=0,...,d

that satisfies the following conditions for each s ∈ {0, . . . , d− 1}:
• (Commutativity) We have a natural commutative diagram

ΠF/Ns
∼−−−−→ ΠGl,s⏐⏐� ⏐⏐�

ΠF/Ns+1
∼−−−−→ ΠGl,s+1

,

where the vertical arrows are the natural outer surjections.

• (Injectivity for cuspidal subgroups) Let j be an integer satisfying 1 ≤
j ≤ d− s− 1. Then the composites

ΠcFDj

→ ΠGl,s

∼← ΠF/Ns � ΠF/Ns+1

Πcl,j,s → ΠGl,s

∼← ΠF/Ns � ΠF/Ns+1

[where the first and third arrows of each line of the display are the
natural outer homomorphisms] are injective.
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• (Injectivity for verticial subgroups) Let j be an integer satisfying 1 ≤
j ≤ d− s− 1. Then the composites

Πvl,s
→ ΠGl,s

∼← ΠF/Ns � ΠF/Ns+1

Πvl,j,s → ΠGl,s

∼← ΠF/Ns � ΠF/Ns+1

[where the first and third arrows of each line of the display are the
natural outer homomorphisms] are injective.

(ii) The images of the above composites are commensurably terminal.

Proof. Assertion (i) follows immediately from the various definitions involved.
Assertion (ii) follows immediately from assertion (i), together with [CmbGC],
Proposition 1.2, (ii).

Proof of Proposition 3.1. By Lemma 2.7, (i), αd ∈ OutC(ΠF/Nd) [cf. Definition
3.2] is the identity outomorphism of ΠF/Nd. Next, we verify the following
assertion:

Claim 3.1.A: The outomorphism αd−1 ∈ OutC(ΠF/Nd−1) [cf. Defi-
nition 3.2] of ΠF/Nd−1 is trivial.

By Lemma 2.3, (i), it suffices to verify Claim 3.1.A under the further assumption
that C log is a smooth log curve. Since Nd−1 is normal in ΠT [cf. Definition 3.2],
we have a commutative diagram

1 −−−−→ ΠF −−−−→ ΠT −−−−→ ΠB −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ ΠF/Nd−1 −−−−→ ΠT/Nd−1 −−−−→ ΠB −−−−→ 1,

where the left and middle vertical arrows are the natural outer surjections.
Write

• Mram ⊆ P1
k(k) for the branch set of the simple covering π : C → P1

k

associated to the r-profiled simple log admissible covering πlog : C log →
(P1

k)
log;

• Munr
def
= {zi ∈ P1

k(k) (1 ≤ i ≤ r)} for the set of ordered marked points;

M
def
= Mram ∪Munr; VC

def
= C \ π−1(Munr); UC

def
= C \ π−1(M) (⊆ VC);

UP
def
= P1

k \M ;

• B
def
= (UC ×UP

UC ×· · ·×UP
UC)\ΔB , where the fiber product is the fiber

product of d copies of the morphism UC → UP , and ΔB denotes the union
of the various diagonals associated to pairs of factors in the fiber product
[cf. Lemma 1.12];

34



• T ′ def= (B×kVC)\ΔT ′ , T
′′ def= (UC×kVC)\ΔT ′′ , T

′′′ def= (VC×kVC)\ΔT ′′′ ,
where ΔT ′ (respectively, ΔT ′′ , ΔT ′′′) is the graph divisor determined by
the composite of the first projection pr1 : B → UC with the natural
inclusion UC ↪→ VC (respectively, the natural inclusion UC ↪→ VC , the
identity morphism VC → VC);

• F ′ for a geometric fiber of the first projection T ′ → B, andK
def
= Ker(π1(F

′)
→ πΣF

1 (F ′)); thus, F ′ may be regarded as a geometric fiber of either of
the first projections T ′′ → UC and T ′′′ → VC .

Then we have a commutative diagram

1 −−−−→ πΣF
1 (F ′) −−−−→ π1(T

′)/K −−−−→ π1(B) −−−−→ 1∥∥∥ ⏐⏐�f1

⏐⏐�f2

1 −−−−→ πΣF
1 (F ′) −−−−→ π1(T

′′)/K −−−−→ π1(UC) −−−−→ 1∥∥∥ ⏐⏐�f3

⏐⏐�f4

1 −−−−→ πΣF
1 (F ′) −−−−→ π1(T

′′′)/K −−−−→ π1(VC) −−−−→ 1,

where f1 is the morphism induced by pr1 × id : T ′ = (B ×k VC) \ΔT ′ → T ′′ =
(UC ×k VC) \ΔT ′′ ; f2 is the morphism induced by pr1 : B → UC ; f3, f4 are the
morphisms induced by the natural inclusions. Since pr1 : B → UC is finite étale,
and ΔT ′ = (pr1× id)−1(ΔT ′′), the morphism pr1× id : T ′ = (B×k VC) \ΔT ′ →
T ′′ = (UC×kVC)\ΔT ′′ is finite étale. Thus, f1, f2 are open injections, and f3, f4
are surjections. Since f4◦f2 : ΠB

∼← π1(B)→ π1(VC) [cf. Proposition 1.10, (vi);
Lemma 1.12; [ExtFam], Theorem B] is an open homomorphism, the triviality
of the outomorphism αd−1 ∈ OutC(ΠF/Nd−1) follows from the “Grothendieck
Conjecture for configuration spaces” [cf. [CbTpI], Theorem 6.12, (i)], together
with the hyperbolicity of VC [cf. the condition 2g−2+dr ≥ 1 in the first display
of Definition 2.4] and our assumption that, for each i = 1, . . . , d, α preserves the
ΠF-conjugacy class of ΠcFDi

⊆ ΠF. This completes the proof of Claim 3.1.A.

Next, we verify the following assertion:

Claim 3.1.B: Let s be an integer such that 0 ≤ s ≤ d − 3. Suppose
that the outomorphism αs+1 ∈ OutC(ΠF/Ns+1) is the identity outo-
morphism of ΠF/Ns+1. Then the outomorphism αs ∈ OutC(ΠF/Ns)
is the identity outomorphism of ΠF/Ns [cf. Definition 3.2].

Since 2 ≤ d − s − 1 ≤ d − 1, it makes sense to consider semi-graphs of an-
abelioids of pro-ΣF PSC-type G1,d−s−1,s and Gd−s−1,d−s,s as in Definition 3.3,

(i), and to fix isomorphisms ΠG1,d−s−1,s

∼← ΠF/Ns
∼→ ΠGd−s−1,d−s,s

that deter-
mine outer isomorphisms as in the collections of outer isomorphisms discussed
in Lemma 3.4, (i). Since Ns is normal in ΠT [cf. Definition 3.2], we have a
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commutative diagram

1 −−−−→ ΠF −−−−→ ΠT −−−−→ ΠB −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ ΠF/Ns −−−−→ ΠT/Ns −−−−→ ΠB −−−−→ 1,

where the vertical arrows are the natural surjections. Write ρ1,s : ΠB →
OutC(ΠF/Ns) for the outer representation induced by the lower exact sequence
of the above commutative diagram. Since α0 = α ∈ ZOutC(ΠF)(ρ1(H)) [cf. Def-

inition 3.2], we obtain that αs ∈ ZOutC(ΠF/Ns)(ρ1,s(H)). Write (ΠT/Ns)|H def
=

(ΠT/Ns)×ΠB H. Let
α̃s ∈ AutH((ΠT/Ns)|H)

[cf. the discussion entitled “Topological groups” in Notations and Conventions]
be a lifting of

αs ∈ ZOutC(ΠF/Ns)(ρ1,s(H)) ⊆ ZOut(ΠF/Ns)(ρ1,s(H))

∼← AutH((ΠT/Ns)|H)/Inn(ΠF/Ns),

where the final isomorphism follows from the center-freeness of ΠF/Ns [cf. the
inequality 2g − 2 + dr ≥ 1 in the first display of Definition 2.4; the discus-
sion entitled “Topological groups” in Notations and Conventions]. Since the
image ΠcFD1,s+1

of ΠcFD1
in ΠF/Ns+1 is commensurably terminal in ΠF/Ns+1 [cf.

Lemma 3.4, (ii)], by replacing α̃s by the composite of α̃s with a suitable inner
automorphism of ΠF/Ns, we may assume that the automorphism of ΠF/Ns+1

induced by α̃s is the identity automorphism, and that α̃s preserves the image
ΠcFD1,s

⊆ ΠF/Ns of ΠcFD1
in ΠF/Ns. Next, let us fix verticial subgroups

ΠcFD1,s
⊆ ΠvF

new,1,d−s−1,s
⊆ ΠG1,d−s−1,s

∼← ΠF/Ns,

ΠcFD1,s
⊆ ΠvF

d−s−1,d−s,s
⊆ ΠGd−s−1,d−s,s

∼← ΠF/Ns

containing ΠcFD1,s
[cf. the notation introduced in Definition 3.3, (i)]. By Lemma

2.7, (ii) [where we take “αF” to be α]; [CmbGC], Proposition 1.5, (ii), α̃s pre-
serves ΠvF

new,1,d−s−1,s
, ΠvF

d−s−1,d−s,s
. Since the composites

ΠvF
new,1,d−s−1,s

↪→ ΠG1,d−s−1,s

∼← ΠF/Ns � ΠF/Ns+1

ΠvF
d−s−1,d−s,s

↪→ ΠGd−s−1,d−s,s

∼← ΠF/Ns � ΠF/Ns+1

are injective [cf. Lemma 3.4, (i)], it suffices to show that the images in ΠF/Ns

of ΠvF
new,1,d−s−1,s

and ΠvF
d−s−1,d−s,s

generate ΠF/Ns. However, this follows im-

mediately from the van Kampen theorem [cf. [CmbCsp], Lemma 1.13, applied
to a suitable neighborhood of the cusps labeled 1, d − s − 1, and d − s in a
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“topological surface representation” of ΠF/Ns, where we take the cusp “a” to
be the cusp labeled 1, the cusp “b” to be the cusp labeled d − s − 1, and the
cusp “c” to be the boundary of the neighborhood]. This completes the proof of
Claim 3.1.B.

Next, we verify the following assertion:

Claim 3.1.C: When r ≥ 1, the outomorphism αd−2 ∈ OutC(ΠF/Nd−2)
is the identity outomorphism of ΠF/Nd−2 [cf. Definition 3.2].

We consider semi-graphs of anabelioids of pro-ΣF PSC-type G1,2,d−2 and G1,d−2

as in Definition 3.3, (i), (ii), and fix isomorphisms ΠG1,2,d−2

∼← ΠF/Nd−2
∼→

ΠG1,d−2
that determine outer isomorphisms as in the collections of outer iso-

morphisms discussed in Lemmas 3.4, (i); 3.5, (i). Since Nd−2 is normal in ΠT

[cf. Definition 3.2], we have a commutative diagram

1 −−−−→ ΠF −−−−→ ΠT −−−−→ ΠB −−−−→ 1⏐⏐� ⏐⏐� ∥∥∥
1 −−−−→ ΠF/Nd−2 −−−−→ ΠT/Nd−2 −−−−→ ΠB −−−−→ 1,

where the vertical arrows are the natural surjections. Write ρ1,d−2 : ΠB →
OutC(ΠF/Nd−2) for the outer representation induced by the lower exact se-
quence of the above commutative diagram. Since α0 = α ∈ ZOutC(ΠF)(ρ1(H))
[cf. Definition 3.2], we obtain that αd−2 ∈ ZOutC(ΠF/Nd−2)(ρ1,d−2(H)). Write

(ΠT/Nd−2)|H def
= (ΠT/Nd−2)×ΠB

H. Let

α̃d−2 ∈ AutH((ΠT/Nd−2)|H)

[cf. the discussion entitled “Topological groups” in Notations and Conventions]
be a lifting of

αd−2 ∈ ZOutC(ΠF/Nd−2)(ρ1,d−2(H)) ⊆ ZOut(ΠF/Nd−2)(ρ1,d−2(H))

∼← AutH((ΠT/Nd−2)|H)/Inn(ΠF/Nd−2),

where the final isomorphism follows from the center-freeness of ΠF/Nd−2 [cf. the
inequality 2g − 2 + dr ≥ 1 in the first display of Definition 2.4; the discussion
entitled “Topological groups” in Notations and Conventions]. Fix a cuspidal
subgroup Πc1,1,d−2

⊆ ΠG1,d−2
associated to c1,1,d−2 [cf. Definition 3.3, (ii)]. Since

the image of Πc1,1,d−2
in ΠF/Nd−1 is commensurably terminal in ΠF/Nd−1 [cf.

Lemma 3.5, (ii)], it follows from Claim 3.1.A that, by replacing α̃d−2 by the
composite of α̃d−2 with a suitable inner automorphism of ΠF/Nd−2, we may
assume that the automorphism of ΠF/Nd−1 induced by α̃d−2 is the identity
automorphism, and that α̃d−2 preserves Πc1,1,d−2

⊆ ΠF/Nd−2. Write Πc1,1,2,d−2

for the image of the composite Πc1,1,d−2
⊆ ΠG1,d−2

∼← ΠF/Nd−2
∼→ ΠG1,2,d−2

.
Next, let us fix verticial subgroups

Πc1,1,2,d−2
⊆ ΠvF

1,2,d−2
⊆ ΠG1,2,d−2

∼← ΠF/Nd−2,
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Πc1,1,d−2
⊆ Πv1,1,d−2

⊆ ΠG1,d−2

∼← ΠF/Nd−2

[cf. the notation introduced in Definition 3.3, (i), (ii)] containing Πc1,1,2,d−2
,

Πc1,1,d−2
, respectively. By Lemma 2.7, (ii) [where we take “αF” to be α];

[CmbGC], Proposition 1.5, (ii), α̃d−2 preserves ΠvF
1,2,d−2

, Πv1,1,d−2
. Since the

composites
ΠvF

1,2,d−2
↪→ ΠG1,2,d−2

∼← ΠF/Nd−2 � ΠF/Nd−1

Πv1,1,d−2
↪→ ΠG1,d−2

∼← ΠF/Nd−2 � ΠF/Nd−1

are injective [cf. Lemmas 3.4, (i); 3.5, (i)], it suffices to show that the images
in ΠF/Nd−2 of ΠvF

1,2,d−2
and Πv1,1,d−2

generate ΠF/Nd−2. However, this follows

immediately from the van Kampen theorem [cf. [CmbCsp], Lemma 1.13, applied
to a suitable neighborhood of the cusps labeled (1, 1) [i.e., the label of the cusp
c1,1,d−2], 1, and 2 in a “topological surface representation” of ΠF/Nd−2, where
we take the cusp “a” to be the cusp labeled (1, 1), the cusp “b” to be the cusp
labeled 1, and the cusp “c” to be the boundary of the neighborhood]. This
completes the proof of Claim 3.1.C and hence the proof of Proposition 3.1 when
r ≥ 1.

Next, we verify the following assertion:

Claim 3.1.D: When r = 0 [so g ≥ 2], and d ≥ g+1, the outomorphism
α = α0 ∈ OutC(ΠF/N0) is the identity outomorphism of ΠF/N0

∼←
ΠF [cf. Definition 3.2].

Here, we consider the semi-graph of anabelioids of pro-ΣF PSC-type

(G1,2,...,g)• def
= (G1,2,...,g)•{cFDi

(g+2≤i≤d)}

[cf. Definition 3.3, (iii); [CbTpI], Definition 2.4]. Observe that the maximal
subgraphs [cf. [SemiAn], §1], hence also the respective sets of vertices and
nodes, of the underlying semi-graphs of G1,2,...,g and (G1,2,...,g)• may be nat-
urally identified with one another. In the following, we fix an isomorphism
ΠG1,2,...,g

∼← ΠF as in the statement of Proposition 3.1, which induces an iso-

morphism Π(G1,2,...,g)•
∼← ΠF/Nd−g−1. Recall from Lemma 2.11 that, relative to

this natural identification, (G1,2,...,g)• satisfies the following conditions:

• Vert((G1,2,...,g)•) = {wF, w′F, vF1 , v
F
2 , . . . , v

F
g+1};

• Node((G1,2,...,g)•) = {eF1 , eF2 , . . . , eFg+1, e
′F
1 , e′F2 , . . . , e′Fg+1};

• N (wF) = {eF1 , eF2 , . . . , eFg+1},N (w′F) = {e′F1 , e′F2 , . . . , e′Fg+1}, and C(wF)# =

C(w′F)# = 0;

• for t = 1, . . . , g + 1, N (vFt ) = {eFt , e′Ft }, and C(vFt ) = {cFDt
};

• for t = 1, . . . , g + 1, vFt is of type (0, 3).
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By the assumptions imposed in the statement of Proposition 3.1, it holds that
α ∈ Aut|grph|(G1,2,...,g) ⊆ Out(ΠG1,2,...,g )

∼← Out(ΠF), hence that

αd−g−1 ∈ Aut|grph|((G1,2,...,g)•) ⊆ Out(Π(G1,2,...,g)•)
∼← Out(ΠF/Nd−g−1).

For t = 1, . . . , g+1, write Nt,d−1 ⊆ ΠF/Nd−g−1 for the normal closed subgroup
of ΠF/Nd−g−1 topologically normally generated by the ΠcFDi

, where i ranges

over the elements of {1, . . . , g + 1} \ {t}. Thus, we observe that, by possibly
permuting the labels 1, . . . , d for the cusps cFDi

, it follows from Claim 3.1.A that
αd−g−1 induces the identity outomorphism of (ΠF/Nd−g−1)/Nt,d−1.

Thus, since g+1 ≥ 2, by applying analogous injectivity properties concerning
verticial subgroups to the properties discussed in Lemmas 3.4, (i); 3.5, (i), we
conclude that

αd−g−1 ∈
⋂

1≤t≤g+1

Im
{
Dehn((G1,2,...,g)•�{et,e′t})→ Dehn((G1,2,...,g)•)

}

⊆ Dehn((G1,2,...,g)•) ⊆ OutC(Π(G1,2,...,g)•)

[cf. Definition 3.3, (iii); [CbTpI], Definitions 2.4, 2.8, 4.4]. On the other hand,
[again since g + 1 ≥ 2] it follows from [CbTpI], Theorem 4.8, (ii), (iv), that

⋂
1≤t≤g+1

Im
{
Dehn((G1,2,...,g)•�{et,e′t})→ Dehn((G1,2,...,g)•)

}
= {1}.

Thus, we conclude that αd−g−1 ∈ OutC(ΠF/Nd−g−1) is the identity outomor-
phism of ΠF/Nd−g−1. Since d − g − 1 ≤ d − 2, Claim 3.1.B thus implies that

α0 = α ∈ OutC(ΠF) is the identity outomorphism of ΠF. This completes the
proof of Claim 3.1.D and hence the proof of Proposition 3.1.

Finally, in the following Proposition 3.6, we observe that in fact, any element
α ∈ ZOutC(ΠF)(ρ1(H)) [cf. Proposition 3.1] preserves the ΠF-conjugacy class of
ΠcFDi

⊆ ΠF, for each i = 1, . . . , d, in almost all cases under consideration.

Proposition 3.6. In the notation of Definition 2.4, for i = 1, . . . , d, let ΠcFDi

⊆
ΠF be a cuspidal subgroup of ΠF associated to cFDi

∈ CuspF(G∗) [cf. Definition
2.6, (i), (iii)], H ⊆ ΠB an open subgroup of ΠB, and α ∈ ZOutC(ΠF)(ρ1(H)).
Then when d ≥ 3 (respectively, d = 2), α ∈ ZOutC(ΠF)(ρ1(H)) preserves the
ΠF-conjugacy class of ΠcFDi

⊆ ΠF for each i = 1, . . . , d (respectively, preserves

the ΠF-conjugacy class of ΠcFDi

⊆ ΠF for i = 1, 2, up to permutation by the

“hyperelliptic involution”, i.e., the outomorphism of ΠF of order 2 induced by the
unique nontrivial covering transformation of the covering πlog : C log −→ Dlog).
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Proof. By Lemma 2.7, (ii), α ∈ Aut(Gi,j) for 1 ≤ i < j ≤ d [cf. Definition
3.3, (i)]. Since 2g − 2 + dr ≥ 1 [cf. Definition 2.4], vFnew,i,j,0 is of type (0, 3),

while vFi,j,0 is not of type (0, 3) [cf. Lemma 2.5, (iv); Definition 3.3, (i)]. Thus,
α induces the identity automorphism of Vert(Gi,j) and, in particular, preserves

the subset {cFDi
, cFDj

} ⊆ CuspF(G∗) [cf. Definition 2.6, (ii)].
Thus, when d ≥ 3, we obtain the desired conclusion by varying i, j and

applying the well-known elementary fact that any automorphism of a set of
cardinality d ≥ 3 that stabilizes every subset of cardinality 2 is necessarily the
identity automorphism. When d = 2, the desired conclusion follows from the
fact that the “hyperelliptic involution” permutes cFD1

and cFD2
.

4 The proof of Theorem A

In this section, our goal is to prove Theorem A [cf. Theorem 4.6]. After dis-
cussing the existence of degenerations of simple coverings that satisfy certain
conditions in Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5, we prove Theorem 4.6.

In Lemmas 4.1, 4.2, 4.3, 4.4, and 4.5, let Σ ⊆ Primes be a nonempty set of
prime numbers; k an algebraically closed field of characteristic zero. If π : C →
D is an r-profiled simple admissible covering of degree d from a ([(d− 1)(2g −
2 + 2d)] + dr)-pointed stable curve (f : C → Spec k;μf ⊆ C) of genus g to a
([2g − 2 + 2d] + r)-pointed stable curve (h : D → Spec k;μh ⊆ D) of genus 0
[cf. Definition 1.7], then we shall write

GC (respectively, GD)

for the semi-graph of anabelioids of pro-Σ PSC-type determined by C (respec-
tively, D).

Lemma 4.1. Let (t,m, d) be a triple of integers satisfying one of the following
two conditions (i), (ii):

(i) t ≥ 3, 0 ≤ m ≤ d− 1, d ≥ 4;

(ii) t = 2, 0 ≤ m ≤ d− 2, d ≥ 4.

Then there exists a 0-profiled simple admissible covering π : C → D of degree
d over k from a symmetrically pointed stable curve (f : C → Spec k;μf ⊆ C)
[cf. Definition 1.2, (ii)] to a symmetrically pointed stable curve (h : D →
Spec k;μh ⊆ D) satisfying the following conditions:

• π : C → D is ramified (i.e., fails to be unramified) over each point of μh;

• π : C → D is unramified over each node of D;

• Vert(GC) = {v1, v2, . . . , vm+1, w1, w2, . . . , wt};
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• Node(GC) = {e1, e2, . . . , etd};
• N (v1) = {e1, e2, . . . , ed−m, ed+1, . . . , e2d−m, . . . , e(t−1)d+1, . . . , etd−m};
• N (vi) = {el | l ≡ d−m+ i− 1 (mod d)} for i = 2, . . . ,m+ 1;

• N (wj) = {e(j−1)d+1, · · · , ejd} for j = 1, . . . , t;

• v1 is of type (0, (d−m)t+2(d−m−1)2) [where the “(d−m)t” corresponds
to the cardinality of N (v1)];

• for i = 2, . . . ,m+ 1 (respectively, j = 1, . . . , t), vi (respectively, wj) is of
type (0, t + 2(d −m − 1)) (respectively, (0, d + 2(d − 1)2)) [where the “t”
(respectively, “d”) corresponds to the cardinality of N (vi) (respectively,
N (wj))];

• Vert(GD) = {v′, w′1, w′2, . . . , w′t};
• Node(GD) = {e′1, e′2, . . . , e′t};
• N (v′) = {e′1, e′2, . . . , e′t};
• N (w′j) = {e′j} (1 ≤ j ≤ t);

• v′ is of type (0, t+2(d−m−1)) [where the “t” corresponds to the cardinality
of N (v′)];

• for j = 1, . . . , t, w′j is of type (0, 1+ 2d− 2) [where the “1” corresponds to
the cardinality of N (w′j)];

• for i = 1, . . . ,m + 1 (respectively, j = 1, . . . , t), vi (respectively, wj) lies
over v′ (respectively, w′j).

Proof. The desired simple admissible covering may be constructed by gluing
together suitable simple coverings of smooth curves [cf. [Ful], Proposition 8.1] at
unramified points of the coverings. Note that the numerical conditions imposed
on (t,m, d) imply, in particular, that the resulting “symmetrically pointed curve
D” is indeed stable.

Remark 4.1.1. In the situation considered in Lemma 4.1, the genus of C is equal
to

td− (m+ t+ 1) + 1 = t(d− 1)−m.

In particular, every integer g satisfying g ≥ d occurs as the genus of some C,
i.e., for a suitable choice of (t,m). We use these coverings in the proof of Claim
4.6.D [cf. the proof of Theorem 4.6, (ii)].

Lemma 4.2. There exist simple admissible coverings satisfying various condi-
tions as follows:
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(i) Let t be an integer satisfying t ≥ 2. Then there exists a 0-profiled simple
admissible covering π : C → D of degree 3 over k from a symmetrically
pointed stable curve (f : C → Spec k;μf ⊆ C) [cf. Definition 1.2, (ii)] to
a symmetrically pointed stable curve (h : D → Spec k;μh ⊆ D) satisfying
the following conditions:

• π : C → D is ramified (i.e., fails to be unramified) over each point of
μh;

• π : C → D is unramified over each node of D;

• Vert(GC) = {v1, w1, w2, . . . , wt};
• Node(GC) = {e1, e2, . . . , e3t};
• N (v1) = Node(GC);
• N (wj) = {e3j−2, e3j−1, e3j} for j = 1, . . . , t;

• v1 is of type (0, 3t+8) [where the “3t” corresponds to the cardinality
of N (v1)];

• for j = 1, . . . , t, wj is of type (1, 3 + 12) [where the “3” corresponds
to the cardinality of N (wj)];

• Vert(GD) = {v′, w′1, w′2, . . . , w′t};
• Node(GD) = {e′1, e′2, . . . , e′t};
• N (v′) = {e′1, e′2, . . . , e′t};
• N (w′j) = {e′j} for j = 1, . . . , t;

• v′ is of type (0, t+4) [where the “t” corresponds to the cardinality of
N (v′)];

• for j = 1, . . . , t, w′j is of type (0, 1+6) [where the “1” corresponds to
the cardinality of N (w′j)];

• v1 lies over v′, and wj lies over w′j for j = 1, . . . , t.

(ii) Let t be an integer satisfying t ≥ 3. Then there exists a 0-profiled simple
admissible covering π : C → D of degree 3 over k from a symmetrically
pointed stable curve (f : C → Spec k;μf ⊆ C) [cf. Definition 1.2, (ii)] to
a symmetrically pointed stable curve (h : D → Spec k;μh ⊆ D) satisfying
the following conditions

• π : C → D is ramified (i.e., fails to be unramified) over each point of
μh;

• π : C → D is unramified over each node of D;

• Vert(GC) = {v1, v2, v3, w1, w2, . . . , wt};
• Node(GC) = {e1, e2, . . . , e3t};
• N (v1) = {e1, e4, . . . , e3t−2};
• N (v2) = {e2, e5, . . . , e3t−1};
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• N (v3) = {e3, e6, . . . , e3t};
• N (wj) = {e3j−2, e3j−1, e3j} for j = 1, . . . , t;

• for i = 1, 2, 3, vi is of type (0, t) [where the “t” corresponds to the
cardinality of N (vi)];

• for j = 1, . . . , t, wj is of type (1, 3 + 12) [where the “3” corresponds
to the cardinality of N (wj)];

• Vert(GD) = {v′, w′1, w′2, . . . , w′t};
• Node(GD) = {e′1, e′2, . . . , e′t};
• N (v′) = {e′1, e′2, . . . , e′t};
• N (w′j) = {e′j} for j = 1, . . . , t;

• v′ is of type (0, t) [where the “t” corresponds to the cardinality of
N (v′)];

• for j = 1, . . . , t, w′j is of type (0, 1+6) [where the “1” corresponds to
the cardinality of N (w′j)];

• for i = 1, 2, 3 (respectively, j = 1, . . . , t), vi (respectively, wj) lies
over v′ (respectively, w′j).

(iii) Let t be an integer satisfying t ≥ 2. Then there exists a 0-profiled simple
admissible covering π : C → D of degree 3 over k from a symmetrically
pointed stable curve (f : C → Spec k;μf ⊆ C) [cf. Definition 1.2, (ii)] to
a symmetrically pointed stable curve (h : D → Spec k;μh ⊆ D) satisfying
the following conditions:

• π : C → D is ramified (i.e., fails to be unramified) over each point of
μh;

• π : C → D is unramified over each node of D;

• Vert(GC) = {v1, v2, w1, w2, . . . , wt};
• Node(GC) = {e1, e2, . . . , e3t};
• N (v1) = {e1, e2, e4, e5, . . . , e3t−2, e3t−1};
• N (v2) = {e3, e6, . . . , e3t};
• N (wj) = {e3j−2, e3j−1, e3j} for j = 1, . . . , t;

• v1 (respectively, v2) is of type (0, 2t + 2) (respectively, (0, t + 2))
[where the “2t” (respectively, “t”) corresponds to the cardinality of
N (v1) (respectively, N (v2))];

• for j = 1, . . . , t, wj is of type (1, 3 + 12) [where the “3” corresponds
to the cardinality of N (wj)];

• Vert(GD) = {v′, w′1, w′2, . . . , w′t};
• Node(GD) = {e′1, e′2, . . . , e′t};
• N (v′) = {e′1, e′2, . . . , e′t};
• N (w′j) = {e′j} for j = 1, . . . , t;
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• v′ is of type (0, t+2) [where the “t” corresponds to the cardinality of
N (v′)];

• for j = 1, . . . , t, w′j is of type (0, 1+6) [where the “1” corresponds to
the cardinality of N (w′j)];

• for i = 1, 2 (respectively, j = 1, . . . , t), vi (respectively, wj) lies over
v′ (respectively, w′j).

Proof. The desired simple admissible covering may be constructed by gluing
together suitable simple coverings of smooth curves [cf. [Ful], Proposition 8.1] at
unramified points of the coverings. Note that the numerical conditions imposed
on t imply, in particular, that the resulting “symmetrically pointed curve D” is
indeed stable.

Remark 4.2.1. We observe that, as “C” varies over the various curves “C”
constructed in the situations considered in Lemma 4.2, (i), (ii), (iii), every
integer g satisfying g ≥ 5 occurs as the genus of some C, i.e., for a suitable
choice of t:

(i) In the situation considered in Lemma 4.2, (i), the genus of C is equal to

t+ 3t− (t+ 1) + 1 = 3t (t ≥ 2).

We use these coverings in the proof of Claim 4.6.E.3 [cf. the proof of
Theorem 4.6, (ii)].

(ii) In the situation considered in Lemma 4.2, (ii), the genus of C is equal to

t+ 3t− (t+ 3) + 1 = 3t− 2 (t ≥ 3).

We use these coverings in the proof of Claim 4.6.E.4 [cf. the proof of
Theorem 4.6, (ii)].

(iii) In the situation considered in Lemma 4.2, (iii), the genus of C is equal to

t+ 3t− (t+ 2) + 1 = 3t− 1 (t ≥ 2).

We use these coverings in the proof of Claim 4.6.E.5 [cf. the proof of
Theorem 4.6, (ii)].

Lemma 4.3. There exists a simple 0-profiled admissible covering π : C → D of
degree 3 over k from a symmetrically pointed stable curve (f : C → Spec k;μf ⊆
C) of genus 5 [cf. Definition 1.2, (ii)] to a symmetrically pointed stable curve
(h : D → Spec k;μh ⊆ D) of genus 0 satisfying the following conditions:

• π : C → D is ramified (i.e., fails to be unramified) over each point of μh;
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• π : C → D is unramified over each node of D;

• Vert(GC) = {v1, w1, w2};
• Node(GC) = {e1, e2, . . . , e6};
• N (v1) = Node(GC);
• N (w1) = {e1, e2, e3};
• N (w2) = {e4, e5, e6};
• v1 (respectively, w1, w2) is of type (0, 6+8) (respectively, (1, 3+12), (0, 3+

8)) [where the “6” (respectively, “3”, “3”) corresponds to the cardinality
of N (v1) (respectively, N (w1), N (w2))];

• Vert(GD) = {v′, w′1, w′2};
• Node(GD) = {e′1, e′2};
• N (v′) = Node(GD);

• N (w′j) = {e′j} for j = 1, 2;

• v′ (respectively, w′1, w
′
2) is of type (0, 2+4) (respectively, (0, 1+6), (0, 1+

4)) [where the “2” (respectively, “1”, “1”) corresponds to the cardinality
of N (v′) (respectively, N (w′1), N (w′2))];

• v1 lies over v′, and wj lies over w′j for j = 1, 2.

Proof. The desired simple admissible covering may be constructed by gluing
together suitable simple coverings of smooth curves [cf. [Ful], Proposition 8.1]
at unramified points of the coverings.

Remark 4.3.1. In the proof of Claim 4.6.E.2 [cf. the proof of Theorem 4.6,
(ii)], we use the covering constructed in Lemma 4.3 instead of the covering
constructed in Lemma 4.2, (iii), for a technical reason.

Lemma 4.4. There exists a 1-profiled simple admissible covering π : C → D of
degree 3 over k from a ([24] + 3)-pointed (respectively, ([20] + 3)-pointed) stable
curve (f : C → Spec k;μf ⊆ C) of genus 4 (respectively, 3) to a ([12] + 1)-
pointed (respectively, ([10] + 1)-pointed) stable curve (h : D → Spec k;μh ⊆ D)
of genus 0 satisfying the following conditions:

• π : C → D is ramified (i.e., fails to be unramified) over each unordered
point of μh;

• π : C → D is unramified over each node of D;

• Vert(GC) = {v1, v2, v3, w1, w2};
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• Node(GC) = {e1, e2, . . . , e6};
• N (v1) = {e1, e4};
• N (v2) = {e2, e5};
• N (v3) = {e3, e6};
• N (w1) = {e1, e2, e3};
• N (w2) = {e4, e5, e6};
• vi is of type (0, 2 + 1) for i = 1, 2, 3 [where the “2” corresponds to the

cardinality of N (vi); the “1” corresponds to the cardinality of the set of
the ordered marked points on vi];

• w1 is of type (1, 3 + 12) [where the “3” corresponds to the cardinality of
N (w1)];

• w2 is of type (1, 3+12) (respectively, (0, 3+8)) [where the “3” corresponds
to the cardinality of N (w2)];

• Vert(GD) = {v′, w′1, w′2};
• Node(GD) = {e′1, e′2};
• N (v′) = Node(GD);

• N (w′j) = {e′j} for j = 1, 2;

• v′ is of type (0, 2 + 1) [where the “2” corresponds to the cardinality of
N (v′); the “1” corresponds to the cardinality of the set of the ordered
marked points on v′];

• w′1 is of type (0, 1 + 6) [where the “1” corresponds to the cardinality of
N (w′1)];

• w′2 is of type (0, 1+6) (respectively, (0, 1+4)) [where the “1” corresponds
to the cardinality of N (w′2)];

• vi lies over v′ for i = 1, 2, 3, and wj lies over w′j for j = 1, 2.

Proof. The desired 1-profiled simple admissible covering may be constructed by
gluing together suitable simple coverings of smooth curves [cf. [Ful], Proposition
8.1] at unramified points of the coverings.

Remark 4.4.1. We use these coverings in the proof of Claim 4.6.E.1 [cf. the
proof of Theorem 4.6, (ii)].
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Lemma 4.5. Let t be an integer satisfying t ≥ 3. Then there exists a 0-profiled
simple admissible covering π : C → D of degree 2 over k from a symmetrically
pointed stable curve (f : C → Spec k;μf ⊆ C) [cf. Definition 1.2, (ii)] to a
symmetrically pointed stable curve (h : D → Spec k;μh ⊆ D) satisfying the
following conditions:

• π : C → D is ramified (i.e., fails to be unramified) over each point of μh;

• π : C → D is unramified over each node of D;

• Vert(GC) = {v1, v2, w1, w2, . . . , wt};
• Node(GC) = {e1, e2, . . . , e2t};
• N (v1) = {e1, e3, . . . , e2t−1};
• N (v2) = {e2, e4, . . . , e2t};
• N (wj) = {e2j−1, e2j} for j = 1, . . . , t;

• for i = 1, 2 (respectively, j = 1, . . . , t), vi (respectively, wj) is of type
(0, t) (respectively, (0, 2 + 2)) [where the “t” (respectively, the first “2” of
“2 + 2”) corresponds to the cardinality of N (vi) (respectively, N (wj))];

• Vert(GD) = {v′, w′1, w′2, . . . , w′t};
• Node(GD) = {e′1, e′2, . . . , e′t};
• N (v′) = Node(GD);

• N (w′j) = {e′j} for j = 1, . . . , t;

• v′ is of type (0, t) [where the “t” corresponds to the cardinality of N (v′)];

• w′j is of type (0, 1 + 2) for j = 1, . . . , t [where the “1” corresponds to the
cardinality of N (w′j)];

• for i = 1, 2 (respectively, j = 1, . . . , t), vi (respectively, wj) lies over v′

(respectively, w′j).

Proof. The desired simple admissible covering may be constructed by gluing
together suitable simple coverings of smooth curves [cf. [Ful], Proposition 8.1] at
unramified points of the coverings. Note that the numerical conditions imposed
on t imply, in particular, that the resulting “symmetrically pointed curve D” is
indeed stable.

Remark 4.5.1. In the situation considered in Lemma 4.4, the genus of C is equal
to

2t− (t+ 2) + 1 = t− 1.
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We use these coverings in the proof of Claim 4.6.F [cf. the proof of Theorem
4.6, (ii)].

Theorem 4.6. Let Σ be a nonempty set of prime numbers; k an algebraically
closed field of characteristic zero; (g, d, r) a triple of nonnegative integers such
that

d ≥ 2 ∧ (g, r) /∈ {(0, 0), (1, 0)} ∧ (g, d, r) /∈ {(0, 2, 1), (0, 3, 1)}
(⇒ 2g − 2 + dr > 1 ∧ 2g + 2d+ r − 5 ≥ 1).

Write (Hg,d,r)k for the r-profiled Hurwitz stack of type (g, d) over k [cf. Defi-
nition 1.8; Definition 1.13, (ii)], where dim(Hg,d,r)k = 2g−2+2d+r−3 = 2g+
2d+ r−5 ≥ 1 [cf. Corollary 1.9]; (Cg,d,r)k → (Hg,d,r)k for the restriction of the
tautological curve over (Mg,dr)k to (Hg,d,r)k via the natural (1-)morphism

(Hg,d,r)k → (Mg,dr)k [cf. Proposition 1.10, (iii)]; ΠHg,d,r

def
= π1((Hg,d,r)k)

for the étale fundamental group of the profiled Hurwitz stack (Hg,d,r)k; Πg,d,r

for the maximal pro-Σ quotient of the kernel Ng,d,r of the natural surjection
π1((Cg,d,r)k) � π1((Hg,d,r)k) = ΠHg,d,r

; ΠCg,d,r for the quotient of the étale
fundamental group π1((Cg,d,r)k) of (Cg,d,r)k by the kernel of the natural sur-

jection Ng,d,r � Πg,d,r; OutC(Πg,d,r) for the group of outomorphisms [cf. the
discussion entitled “Topological groups” in Notations and Conventions] of Πg,d,r

which induce bijections on the set of cuspidal inertia subgroups of Πg,d,r. Thus,
we have a natural sequence of profinite groups

1 −→ Πg,d,r −→ ΠCg,d,r −→ ΠHg,d,r
−→ 1

which determines an outer representation

ρg,d,r : ΠHg,d,r
−→ Out(Πg,d,r)

Then the following hold:

(i) The profinite group Πg,d,r is the maximal pro-Σ quotient of the étale fun-
damental group of a hyperbolic curve over an algebraically closed field of
characteristic zero [i.e., a pro-Σ surface group — cf. [MT], Definition
1.2] and is naturally isomorphic to the profinite group “Πg,r” of [CbTpI],
Theorem D, in the case where one takes the “(g, r)” of loc. cit. to be
(g, dr) [in the notation of the present discussion].

(ii) Let H ⊆ ΠHg,d,r
be an open subgroup of ΠHg,d,r

. Then the composite of
natural homomorphisms

Aut(Hg,d,r)k((Cg,d,r)k) −→ AutΠHg,d,r
(ΠCg,d,r )/Inn(Πg,d,r)

∼−→ ZOut(Πg,d,r)(Im(ρg,d,r)) ⊆ ZOut(Πg,d,r)(ρg,d,r(H))

[cf. the discussion entitled “Topological groups” in Notations and Con-
ventions] determines an isomorphism
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Aut(Hg,d,r)k((Cg,d,r)k) ∼−→ ZOutC(Πg,d,r)(ρg,d,r(H)).

Moreover, Aut(Hg,d,r)k((Cg,d,r)k) is isomorphic to⎧⎪⎨
⎪⎩
Z/2Z× Z/2Z if (g, d, r) ∈ {(0, 2, 2), (0, 4, 1)};
Z/2Z if (g, d, r) ∈ {(g, 2, r) | (g, r) �= (0, 2)} ∪ {(2, d, 0)};
{1} if (g, d, r) /∈ {(0, 4, 1), (g, 2, r), (2, d, 0)}.

(iii) Let H ⊆ OutC(Πg,d,r) be a closed subgroup of OutC(Πg,d,r) that contains
an open subgroup of Im(ρg,d,r) ⊆ Out(Πg,d,r). Then H is almost slim
[cf. the discussion entitled “Topological groups” in Notations and Con-
ventions]. If, moreover,

(g, d, r) /∈ {(0, 4, 1), (g, 2, r), (2, d, 0)},
then H is slim [cf. the discussion entitled “Topological groups” in Nota-
tions and Conventions].

Proof. Assertion (i) follows immediately from Proposition 1.14, (ii), together
with the various definitions involved.

Next, we verify assertion (ii). First, we verify the following assertion:

Claim 4.6.A: The composite homomorphism

Aut(Hg,d,r)k((Cg,d,r)k) −→ ZOut(Πg,d,r)(ρg,d,r(H)) = ZOut(Πg,dr)(ρg,d,r(H))

[cf. Theorem 4.6, (i)] is injective.

This follows immediately from the well-known fact that any non-trivial automor-
phism of a hyperbolic curve over an algebraically closed field of characteristic
/∈ Σ induces a non-trivial outomorphism of the maximal pro-Σ quotient of the
étale fundamental group of the hyperbolic curve [cf., e.g., [LocAn], the proof of
Theorem 14.1]. This completes the proof of Claim 4.6.A.

Note that it follows immediately from the various definitions involved that
the composite homomorphism Aut(Hg,d,r)k((Cg,d,r)k) → ZOut(Πg,dr)(ρg,d,r(H))
factors through ZOutC(Πg,dr)(ρg,d,r(H)), hence determines an injection

Aut(Hg,d,r)k((Cg,d,r)k) ↪→ ZOutC(Πg,dr)(ρg,d,r(H)).

In the remainder of the proof, for each x ∈ H̃g,d,r(k) [cf. Proposition 1.10,
(i)], write

Gx
for the semi-graph of anabelioids of pro-Σ PSC-type associated to the geometric

fiber of C̃logg,d,r → H̃log
g,d,r [cf. Definition 1.13, (i)] over xlog def

= x ×
˜Hg,d,r

H̃log
g,d,r.

Thus, we have a natural Im(ρg,d,r)-torsor of outer isomorphisms Πg,dr
∼→ ΠGx

.

Let us fix an isomorphism Πg,dr
∼→ ΠGx

that belongs to this collection of iso-
morphisms.

Next, we verify the following assertion:
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Claim 4.6.B: Suppose that

{
r > 1 ∧ 2g − 2 + d(r − 1) ≥ 1

} ∨ {
r = 1 ∧ 2g − 2 ≥ 1 ∧ d > g

}
⇔

r > 0 ∧ {r = 1⇒ d > g} ∧ (g, r) /∈ {(0, 1), (1, 1)} ∧ (g, d, r) �= (0, 2, 2).

Then the injection

Aut(Hg,d,r)k((Cg,d,r)k) ↪→ ZOutC(Πg,dr)(ρg,d,r(H))

is surjective. Moreover, the description of Aut(Hg,d,r)k((Cg,d,r)k) in
the statement of Theorem 4.6, (ii), holds.

Indeed, since 2g + 2d + r − 5 ≥ 1, it makes sense to define N to be the kernel
of the surjection ΠHg,d,r

� ΠHg,d,r−1
[cf. Proposition 1.14, (iii)] determined

by the (1-)morphism φg,d,r−1 : (Hg,d,r)k → (Hg,d,r−1)k [cf. Proposition 1.10,
(iii)] obtained by forgetting the final d sections (respectively, final section) of
the domain curve (respectively, codomain curve). Then it follows immediately
from the various definitions involved that there exists a commutative diagram
of profinite groups

1 −−−−→ Πg,dr −−−−→ E −−−−→ N −−−−→ 1

�
⏐⏐� �

⏐⏐� �
⏐⏐�

1 −−−−→ ΠF −−−−→ ΠT −−−−→ ΠB −−−−→ 1,

where the upper sequence is the exact sequence obtained by pulling back the
exact sequence

1 −→ Πg,dr −→ ΠCg,d,r −→ ΠHg,d,r
−→ 1

[cf. Proposition 1.14, (ii)] by the natural inclusion N ↪→ ΠHg,d,r
; the lower

sequence is the exact sequence “1 → ΠF → ΠT → ΠB → 1” obtained by
applying the procedure given in the statement of Lemma 2.3 in the case where
ΣF = Σ and m = 1 to an (r−1)-profiled simple log admissible covering of degree
d whose domain is a stable log curve of genus g over (Spec k)log; the vertical
arrows are isomorphisms.

Let α ∈ ZOutC(Πg,dr)(ρg,d,r(H)) be an outomorphism of Πg,dr. Thus, α natu-

rally determines an element of ZOutC(Πg,dr)(ρg,d,r(H ∩N))
∼→ ZOutC(ΠF)(ρ1(H ∩

N)), where ρ1 is as in Lemma 2.3.
Next, we claim the following:

Claim 4.6.B.1: When r−1 = 0, the condition “α ∈ Aut|{w
F}|(G1,2,...,g)”

in Proposition 3.1 is satisfied.

Let x ∈ C1(k) ⊆ H̃g,d,1(k) be as in Definition 3.3, (iii), so Gx may be identified
with “G1,2,...,g”. Next, let us consider the composite

π1(x
log) −→ π1((H̃log

g,d,1)k)
∼←− ΠHg,d,1

ρg,d,1−→ Out(Πg,d),
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where the first arrow is the natural outer homomorphism; the second arrow is
the outer isomorphism obtained by applying the log purity theorem to the nat-
ural (1-)morphism (Hg,d,1)k ↪→ (H̃log

g,d,1)k [cf. Proposition 1.10, (ii); [ExtFam],

Theorem B]. This composite factors through π1(x
log)→ Dehn(Gx) [cf. [CbTpI],

Definition 4.4; [CbTpI], Lemma 5.4, (iii)]. By considering the log structure

of (H̃log
g,d,1)k [cf. Theorem 1.5; Corollary 1.9; Proposition 1.10, (ii); [GCH],

§3.23], we conclude that the image of this arrow π1(x
log) → Dehn(Gx) con-

tains a positive definite element [cf. [CbTpI], Lemma 5.4, (ii); [CbTpI], Def-
inition 5.8, (iii)], hence is IPSC-ample [cf. [CbTpI], Definition 5.13]. Thus,
it follows from [CbTpI], Lemma 5.12, (i); [CbTpI], Theorem 5.14, (i), that
α ∈ ZOutC(Πg,d)(ρg,d,1(H)) is graphic. Next, let us observe that it follows im-

mediately from the description of the log structure of (H̃log
g,d,1)k given in [GCH],

§3.23 [cf. also Theorem 1.5; Corollary 1.9; Proposition 1.10, (ii); Lemma 2.11],

that the deformations parametrized by (H̃log
g,d,1)k of nodes ∈ N (wF) are indepen-

dent of the deformations parametrized by (H̃log
g,d,1)k of nodes ∈ N (w′F). Thus,

the fact that α ∈ ZOutC(Πg,d)(ρg,d,1(H)) implies [cf. [CbTpI], Lemma 5.4, (ii)]

that α determines an element of Aut(Gx) that preserves wF. This completes the
proof of Claim 4.6.B.1.

Thus, by Propositions 3.1 and 3.6, the elements of ZOutC(ΠF)(ρ1(H ∩ N))
are geometric, hence α ∈ ZOutC(Πg,dr)(ρg,d,r(H)) is geometric [i.e., in this case,
is trivial or arises from the hyperelliptic involution]. This completes the proof
of Claim 4.6.B.

Next, we verify the following assertion:

Claim 4.6.C: Suppose that

{r = 0⇒ d ≥ g
2 + 1} ∨ (g, r) ∈ {(0, 1), (1, 1)} ∨ (g, d, r) = (0, 2, 2).

Then the injection Aut(Hg,d,r)k((Cg,d,r)k) ↪→ ZOutC(Πg,dr)(ρg,d,r(H))
is surjective. Moreover, the description of Aut(Hg,d,r)k((Cg,d,r)k) in
the statement of Theorem 4.6, (ii), holds.

Since the image of the arrow ψg,d,r : (Hg,d,r)k −→ (Mg,dr)k [cf. Definition
1.13, (i)] is dense in this case [cf. Corollary 2.9; Proposition 2.10; the well-
known, elementary structure of double coverings of the projective line over k],
the image of the arrow Π(Hg,d,r)k → Π(Mg,dr)k is open. Thus, the assertion
follows immediately from the corresponding “Grothendieck Conjecture” for the
universal curve over (Mg,dr)k [cf. Theorem M, (i)]. This completes the proof
of Claim 4.6.C.

Next, we verify the following assertion:

Claim 4.6.D: Suppose that

r = 0, d ≥ 4 (respectively, r = 1, d ≥ 4).

Then the injection Aut(Hg,d,r)k((Cg,d,r)k) ↪→ ZOutC(Πg,dr)(ρg,d,r(H))
is surjective. Moreover, the description of Aut(Hg,d,r)k((Cg,d,r)k) in
the statement of Theorem 4.6, (ii), holds.
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By Claim 4.6.C (respectively, Claim 4.6.B), we may assume that g ≥ 2d− 1 ≥
7 (respectively, g ≥ d ≥ 4). Thus, it suffices to show that the centralizer
ZOutC(Πg,dr)(ρg,d,r(H)) is trivial. Next, let us observe that by considering the
covering obtained by applying Lemma 4.1 in the case where

t
def
= � g

d−1� (⇒ t ≥ 3 (respectively, t ≥ 2)), m
def
= t(d− 1)− g,

one may verify easily that there exists a k-valued point x ∈ H̃g,d,0(k) [so Gx has

no cusps!] (respectively, x ∈ H̃g,d,1(k) [so Gx has precisely d cusps]) satisfying
the following conditions:

• Vert(Gx) = {v1, v2, . . . , vm+1, w1, w2, . . . , wt};
• Node(Gx) = {e1, e2, . . . , etd};
• N (v1) = {e1, e2, . . . , ed−m, ed+1, . . . , e2d−m, . . . , e(t−1)d+1, . . . , etd−m};
• N (vi) = {el | l ≡ d−m+ i− 1 (mod d)} for i = 2, . . . ,m+ 1;

• N (wj) = {e(j−1)d+1, · · · , ejd} for j = 1, . . . , t;

• v1 is of type (0, (d−m)t) (respectively, (0, (d−m)(t+ 1)));

• for i = 2, . . . ,m+ 1, vi is of type (0, t) (respectively, (0, t+ 1));

• for j = 1, . . . , t, wj is of type (0, d).

Thus, let us fix x ∈ H̃g,d,0(k) (respectively, x ∈ H̃g,d,1(k)) satisfying the
above conditions.

Let α ∈ ZOutC(Πg,0)(ρg,d,0(H)) (respectively, α ∈ ZOutC(Πg,d)(ρg,d,1(H))) be
an outomorphism of Πg,0 (respectively, Πg,d). Suppose, moreover, that, relative

to the isomorphism Πg,0
∼→ ΠGx (respectively, Πg,d

∼→ ΠGx) fixed above [cf.
the discussion immediately preceding Claim 4.6.B], α ∈ ZOutC(Πg,0)(ρg,d,0(H))
(respectively, α ∈ ZOutC(Πg,d)(ρg,d,1(H))) determines an element of Aut(Gx)
that preserves wj for each j = 1, . . . , t [cf. Claim 4.6.D.2]. For j = 1, . . . , t,
write

(Gx)j def
= (Gx)�{e(j−1)d+1,e(j−1)d+2,...,ejd}

[cf. [CbTpI], Definition 2.8]; αj for the image of α via the natural inclusion

Aut|W |(Gx) ↪→ Aut((Gx)j) [cf. [CbTpI], Definition 2.6, (i); [CbTpI], Proposition

2.9, (ii)], where we write W
def
= {w1, w2, . . . , wt}.

Next, we claim the following:

Claim 4.6.D.1: αj ∈ Dehn((Gx)j).
Note that one may verify easily that there exists a k-valued point yj ∈ H̃g,d,0(k)

(respectively, yj ∈ H̃g,d,1(k)) such that Gyj may be identified with (Gx)j .
By gluing together
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• a (t−1)-profiled (respectively, t-profiled) simple covering of degree d from
a smooth curve of genus d− 1−m [corresponding to v1, v2, . . . , vm+1, wj ]
to a smooth curve of genus 0

and

• an ordered collection of (t−1) 1-profiled simple coverings of degree d from
smooth curves of genus 0 [corresponding to wj′ , for j

′ ∈ {1, 2, . . . , t}\{j}]
to smooth curves of genus 0

at unramified marked points of

• the domain curves [i.e., for each p = 1, . . . , t− 1 and q = 1, . . . , d, we glue
the ((p − 1)d + q)-th marked point of the domain curve of the (t − 1)-
profiled (respectively, t-profiled) simple covering to the q-th marked point
of the domain curve of the p-th member of the ordered collection of (t−1)
1-profiled simple coverings]

and

• the codomain curves [i.e., for each p = 1, . . . , t−1, we glue the p-th marked
point of the codomain curve of the (t−1)-profiled (respectively, t-profiled)
simple covering to the marked point of the codomain curve of the p-th
member of the ordered collection of (t− 1) 1-profiled simple coverings],

we obtain a clutching morphism [cf. [Knud], Definition 3.6]

Hd−1−m,d,t−1 ×H0,d,1 × · · · × H0,d,1 −→ Hg,d,0

(respectively, Hd−1−m,d,t ×H0,d,1 × · · · × H0,d,1 −→ Hg,d,1),

where the number of factors in the above product is t. Since the image of
this clutching morphism is contained in the normal locus of Hg,d,0 (respectively,
Hg,d,1) [cf. Theorem 1.5; Corollary 1.9; [GCH], §3.23], we thus obtain a clutching
morphism

Hd−1−m,d,t−1 ×H0,d,1 × · · · × H0,d,1 −→ H̃g,d,0

(respectively, Hd−1−m,d,t ×H0,d,1 × · · · × H0,d,1 −→ H̃g,d,1).

Note that yj ∈ H̃g,d,0(k) (respectively, yj ∈ H̃g,d,1(k)) is contained in the image
of the above clutching morphism, and that

αj ∈ ZOutC(ΠGyj )
(ρg,d,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,d,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Πd−1−m,(t−1)d)
(ρd−1−m,d,t−1(H

†))
(respectively, ZOutC(Πd−1−m,td)(ρd−1−m,d,t(H

†))),

53



whereH† ⊆ ΠHd−1−m,d,t−1
(respectively, H† ⊆ ΠHd−1−m,d,t

) is an open subgroup
of ΠHd−1−m,d,t−1

(respectively, ΠHd−1−m,d,t
). Since d ≥ 4 and t ≥ 3 (respectively,

t ≥ 2), this element is trivial by Claim 4.6.B. In particular, αj ∈ Aut|grph|(Gyj
) ⊆

Aut(Gyj ) = Aut((Gx)j). On the other hand,

αj ∈ ZOutC(ΠGyj )
(ρg,d,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,d,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π0,d)(ρ0,d,1(H
‡))

for each component of the above product H0,d,1 × · · · × H0,d,1, where H‡ ⊆
ΠH0,d,1

is an open subgroup of ΠH0,d,1
. Since αj ∈ Aut|grph|(Gyj

), these elements
preserve each Π0,d-conjugacy class of cuspidal subgroups of Π0,d. Thus, since
d ≥ 4, these elements are trivial by Claim 4.6.C. This completes the proof of
Claim 4.6.D.1.

Thus, by varying j, we conclude from Claim 4.6.D.1 and [CbTpI], Theorem
4.8, (ii), (iv), that α is trivial. Hence it remains to verify the following:

Claim 4.6.D.2: α determines an element of Aut(Gx) that preserves
wj for each j = 1, . . . , t.

The proof of Claim 4.6.D.2 is similar to the proof of Claim 4.6.B.1, i.e., it suf-
fices to observe that, for j �= j′, the deformations parametrized by (H̃log

g,d,0)k

(respectively, (H̃log
g,d,1)k) of nodes ∈ N (wj) are independent of the deforma-

tions parametrized by (H̃log
g,d,0)k (respectively, (H̃log

g,d,1)k) of nodes ∈ N (wj′) [cf.
Lemma 4.1]. This completes the proof of Claim 4.6.D.2, hence also the proof of
Claim 4.6.D.

Next, we verify the following assertion:

Claim 4.6.E: Suppose that

r = 0, d = 3 (respectively, r = 1, d = 3).

Then the injection Aut(Hg,d,r)k((Cg,d,r)k) ↪→ ZOutC(Πg,dr)(ρg,d,r(H))
is surjective. Moreover, the description of Aut(Hg,d,r)k((Cg,d,r)k) in
the statement of Theorem 4.6, (ii), holds.

Since we are operating under the assumption that (g, d, r) �= (0, 3, 1), it follows
from Claim 4.6.C (respectively, Claims 4.6.B, 4.6.C) that we may assume that
g ≥ 5 (respectively, g ≥ 3). Thus, it suffices to show that the centralizer
ZOutC(Πg,dr)(ρg,d,r(H)) is trivial.

Claim 4.6.E.1: When g = 4 (respectively, g = 3), r = 1, Claim 4.6.E
holds. [Note that in the statement and proof of the present Claim
4.6.1, the non-resp’d case corresponds to the case g = 4, r = 1, while
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the resp’d case corresponds to the case g = 3, r = 1. This partition
into non-resp’d and resp’d cases differs from the partition into non-
resp’d and resp’d cases that is adopted in the statement of Claim
4.6.E, as well as in the statements and proofs of Claims 4.6.E.2,
4.6.E.3, 4.6.E.4, 4.6.E.5, i.e., where the non-resp’d case corresponds
to the case r = 0, while the resp’d case corresponds to the case
r = 1.]

Let us first observe that by considering the covering obtained by applying
Lemma 4.4, one may verify easily that there exists a k-valued point x ∈ H̃g,3,1(k)
[so Gx has 3 cusps] satisfying the following conditions:

• Vert(Gx) = {v1, v2, v3, w1, w2};
• Node(Gx) = {e1, e2, . . . , e6};
• N (v1) = {e1, e4};
• N (v2) = {e2, e5};
• N (v3) = {e3, e6};
• N (w1) = {e1, e2, e3};
• N (w2) = {e4, e5, e6};
• vi is of type (0, 3) for i = 1, 2, 3;

• w1 is of type (1, 3);

• w2 is of type (1, 3) (respectively, (0, 3)).

Thus, let us fix x ∈ H̃4,3,1(k) (respectively, x ∈ H̃3,3,1(k)) satisfying the
above conditions.

Let α ∈ ZOutC(Π4,3)(ρ4,3,1(H)) (respectively, α ∈ ZOutC(Π3,3)(ρ3,3,1(H))) be
an outomorphism of Π4,3 (respectively, Π3,3). Suppose, moreover, that, relative

to the isomorphism Π4,3
∼→ ΠGx (respectively, Π3,3

∼→ ΠGx) fixed above [cf.
the discussion immediately preceding Claim 4.6.B], α ∈ ZOutC(Π4,3)(ρ4,3,1(H))
(respectively, α ∈ ZOutC(Π3,3)(ρ3,3,1(H))) determines an element of Aut(Gx) that
preserves wj for each j = 1, 2 [cf. Claim 4.6.E.1.3]. For j = 1, 2, write

(Gx)j def
= (Gx)�{e3j−2,e3j−1,...,e3j}

[cf. [CbTpI], Definition 2.8]; αj for the image of α via the natural inclusion

Aut|W |(Gx) ↪→ Aut((Gx)j) [cf. [CbTpI], Definition 2.6, (i); [CbTpI], Proposition

2.9, (ii)], where we write W
def
= {w1, w2}.

Next, we claim the following:

Claim 4.6.E.1.1: α2 ∈ Dehn((Gx)2).
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Note that one may verify easily that there exists a k-valued point y2 ∈ H̃4,3,1(k)

(respectively, y2 ∈ H̃3,3,1(k)) such that Gy2
may be identified with (Gx)2.

By gluing together simple coverings at unramified marked points as in the
proof of Claim 4.6.D.1, we obtain a clutching morphism [cf. [Knud], Definition
3.6]

H1,3,2 ×H1,3,1 −→ H4,3,1

(respectively, H0,3,2 ×H1,3,1 −→ H3,3,1),

where the first factor in the product corresponds to the irreducible component
of (Gx)2 that arises from v1, v2, v3, and w2; the second factor corresponds to
w1. Since the image of this clutching morphism is contained in the normal locus
of H4,3,1 (respectively, H3,3,1) [cf. Theorem 1.5; Corollary 1.9; [GCH], §3.23],
we thus obtain a clutching morphism

H1,3,2 ×H1,3,1 −→ H̃4,3,1

(respectively, H0,3,2 ×H1,3,1 −→ H̃3,3,1).

Note that y2 ∈ H̃4,3,1(k) (respectively, y2 ∈ H̃3,3,1(k)) is contained in the image
of the above clutching morphism, and that

α2 ∈ ZOutC(ΠGy2 )
(ρ4,3,1(H)) ∩Aut((Gx)2) ⊆ OutC(ΠGy2

)

(respectively, α2 ∈ ZOutC(ΠGy2 )
(ρ3,3,1(H)) ∩Aut((Gx)2) ⊆ OutC(ΠGy2

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π1,6)(ρ1,3,2(H
†))

(respectively, ZOutC(Π0,6)(ρ0,3,2(H
†))),

where H† ⊆ ΠH1,3,2
(respectively, H† ⊆ ΠH0,3,2

) is an open subgroup of ΠH1,3,2

(respectively, ΠH0,3,2
). This element is trivial by Claim 4.6.B. In particular,

α2 ∈ Aut|grph|(Gy2) ⊆ Aut(Gy2) = Aut((Gx)2). On the other hand,

α2 ∈ ZOutC(ΠGy2 )
(ρ4,3,1(H)) ∩Aut((Gx)2) ⊆ OutC(ΠGy2

)

(respectively, α2 ∈ ZOutC(ΠGy2 )
(ρ3,3,1(H)) ∩Aut((Gx)2) ⊆ OutC(ΠGy2

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π1,3)(ρ1,3,1(H
‡)),

where H‡ ⊆ ΠH1,3,1
is an open subgroup of ΠH1,3,1

. This element is trivial by
Claim 4.6.C. This completes the proof of Claim 4.6.E.1.1.

Next, we claim the following:

Claim 4.6.E.1.2: The image of α ∈ Aut|W |(Gx) by the natural mor-

phism Aut|W |(Gx)→ Aut(Gx|H) is trivial, where H denotes the sub-
semi-graph of Gx determined by the set of vertices {v1, v2, v3, w1}
[cf. [CbTpI], Definition 2.2, (i)].
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Note that one may verify easily that there exists a k-valued point y1 ∈ H̃4,3,1(k)

(respectively, y1 ∈ H̃3,3,1(k)) such that Gy1
may be identified with (Gx)1.

By gluing together simple coverings at unramified marked points as in the
proof of Claim 4.6.D.1, we obtain a clutching morphism [cf. [Knud], Definition
3.6]

H1,3,2 ×H1,3,1 −→ H4,3,1

(respectively, H1,3,2 ×H0,3,1 −→ H3,3,1),

where the first factor in the product corresponds to the irreducible component
of (Gx)1 that arises from v1, v2, v3, and w1; the second factor corresponds to
w2. Since the image of this clutching morphism is contained in the normal locus
of H4,3,1 (respectively, H3,3,1) [cf. Theorem 1.5; Corollary 1.9; [GCH], §3.23],
we thus obtain a clutching morphism

H1,3,2 ×H1,3,1 −→ H̃4,3,1

(respectively, H1,3,2 ×H0,3,1 −→ H̃3,3,1).

Note that y1 ∈ H̃4,3,1(k) (respectively, y1 ∈ H̃3,3,1(k)) is contained in the image
of the above clutching morphism, and that

α1 ∈ ZOutC(ΠGy1 )
(ρ4,3,1(H)) ∩Aut((Gx)1) ⊆ OutC(ΠGy1

)

(respectively, α1 ∈ ZOutC(ΠGy1 )
(ρ3,3,1(H)) ∩Aut((Gx)1) ⊆ OutC(ΠGy1

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π1,6)(ρ1,3,2(H
†)),

where H† ⊆ ΠH1,3,2
is an open subgroup of ΠH1,3,2

. This element is trivial by
Claim 4.6.B. This completes the proof of Claim 4.6.E.1.2.

Thus, we conclude from Claim 4.6.E.1.1, Claim 4.6.E.1.2, and [CbTpI], The-
orem 4.8, (ii), (iv), that α is trivial. Hence it remains to verify the following:

Claim 4.6.E.1.3: α determines an element of Aut(Gx) that preserves
wj for each j = 1, 2.

The proof of Claim 4.6.E.1.3 is similar to the proof of Claim 4.6.D.2. This
completes the proof of Claim 4.6.E.1.

Claim 4.6.E.2: When g = 5, Claim 4.6.E holds.

Let us first observe that by considering the covering obtained by applying
Lemma 4.3, one may verify easily that there exists a k-valued point x ∈ H̃5,3,0(k)

[so Gx has no cusps!] (respectively, x ∈ H̃5,3,1(k) [so Gx has 3 cusps]) satisfying
the following conditions:

• Vert(Gx) = {v1, w1, w2};
• Node(Gx) = {e1, e2, . . . , e6};
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• N (v1) = Node(Gx);
• N (w1) = {e1, e2, e3};
• N (w2) = {e4, e5, e6};
• v1 is of type (0, 6) (respectively, (0, 9));

• w1 is of type (1, 3);

• w2 is of type (0, 3).

Thus, let us fix x ∈ H̃5,3,0(k) (respectively, x ∈ H̃5,3,1(k)) satisfying the
above conditions.

Let α ∈ ZOutC(Π5,0)(ρ5,3,0(H)) (respectively, α ∈ ZOutC(Π5,3)(ρ5,3,1(H))) be
an outomorphism of Π5,0 (respectively, Π5,3). Suppose, moreover, that, relative

to the isomorphism Π5,0
∼→ ΠGx

(respectively, Π5,3
∼→ ΠGx

) fixed above [cf.
the discussion immediately preceding Claim 4.6.B], α ∈ ZOutC(Π5,0)(ρ5,3,0(H))
(respectively, α ∈ ZOutC(Π5,3)(ρ5,3,1(H))) determines an element of Aut(Gx) that
preserves wj for each j = 1, 2 [cf. Claim 4.6.E.2.3]. For j = 1, 2, write

(Gx)j def
= (Gx)�{e3j−2,e3j−1,...,e3j}

[cf. [CbTpI], Definition 2.8]; αj for the image of α via the natural inclusion

Aut|W |(Gx) ↪→ Aut((Gx)j) [cf. [CbTpI], Definition 2.6, (i); [CbTpI], Proposition

2.9, (ii)], where we write W
def
= {w1, w2}.

Next, we claim the following:

Claim 4.6.E.2.1: α2 ∈ Dehn((Gx)2).
Note that one may verify easily that there exists a k-valued point y2 ∈ H̃5,3,0(k)

(respectively, y2 ∈ H̃5,3,1(k)) such that Gy2
may be identified with (Gx)2.

By gluing together simple coverings at unramified marked points as in the
proof of Claim 4.6.D.1, we obtain a clutching morphism [cf. [Knud], Definition
3.6]

H2,3,1 ×H1,3,1 −→ H5,3,0

(respectively, H2,3,2 ×H1,3,1 −→ H5,3,1),

where the first factor in the product corresponds to the irreducible component
of (Gx)2 that arises from v1, w2; the second factor corresponds to w1. Since
the image of this clutching morphism is contained in the normal locus of H5,3,0

(respectively, H5,3,1) [cf. Theorem 1.5; Corollary 1.9; [GCH], §3.23], we thus
obtain a clutching morphism

H2,3,1 ×H1,3,1 −→ H̃5,3,0

(respectively, H2,3,2 ×H1,3,1 −→ H̃5,3,1).
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Note that y2 ∈ H̃5,3,0(k) (respectively, y2 ∈ H̃5,3,1(k)) is contained in the image
of the above clutching morphism, and that

α2 ∈ ZOutC(ΠGy2 )
(ρ5,3,0(H)) ∩Aut((Gx)2) ⊆ OutC(ΠGy2

)

(respectively, α2 ∈ ZOutC(ΠGy2 )
(ρ5,3,1(H)) ∩Aut((Gx)2) ⊆ OutC(ΠGy2

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π2,3)(ρ2,3,1(H
†))

(respectively, ZOutC(Π2,6)(ρ2,3,2(H
†))),

where H† ⊆ ΠH2,3,1
(respectively, H† ⊆ ΠH2,3,2

) is an open subgroup of ΠH2,3,1

(respectively, ΠH2,3,2
). This element is trivial by Claim 4.6.B. In particular,

α2 ∈ Aut|grph|(Gy2
) ⊆ Aut(Gy2

) = Aut((Gx)2). On the other hand,

α2 ∈ ZOutC(ΠGy2 )
(ρ5,3,0(H)) ∩Aut((Gx)2) ⊆ OutC(ΠGy2

)

(respectively, α2 ∈ ZOutC(ΠGy2 )
(ρ5,3,1(H)) ∩Aut((Gx)2) ⊆ OutC(ΠGy2

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π1,3)(ρ1,3,1(H
‡)),

where H‡ ⊆ ΠH1,3,1
is an open subgroup of ΠH1,3,1

. This element is trivial by
Claim 4.6.C. This completes the proof of Claim 4.6.E.2.1.

Next, we claim the following:

Claim 4.6.E.2.2: The image of α ∈ Aut|W |(Gx) by the natural mor-

phism Aut|W |(Gx) → Aut(Gx|H) is trivial, where H denotes the
sub-semi-graph of Gx determined by the set of vertices {v1, w1} [cf.
[CbTpI], Definition 2.2, (i)].

Note that one may verify easily that there exists a k-valued point y1 ∈ H̃5,3,0(k)

(respectively, y1 ∈ H̃5,3,1(k)) such that Gy1 may be identified with (Gx)1.
By gluing together simple coverings at unramified marked points as in the

proof of Claim 4.6.D.1, we obtain a clutching morphism [cf. [Knud], Definition
3.6]

H3,3,1 ×H0,3,1 −→ H5,3,0

(respectively, H3,3,2 ×H0,3,1 −→ H5,3,1),

where the first factor in the product corresponds to the irreducible component
of (Gx)1 that arises from v1, w1; the second factor corresponds to w2. Since
the image of this clutching morphism is contained in the normal locus of H5,3,0

(respectively, H5,3,1) [cf. Theorem 1.5; Corollary 1.9; [GCH], §3.23], we thus
obtain a clutching morphism

H3,3,1 ×H0,3,1 −→ H̃5,3,0

(respectively, H3,3,2 ×H0,3,1 −→ H̃5,3,1).
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Note that y1 ∈ H̃5,3,0(k) (respectively, y1 ∈ H̃5,3,1(k)) is contained in the image
of the above clutching morphism, and that

α1 ∈ ZOutC(ΠGy1 )
(ρ5,3,0(H)) ∩Aut((Gx)1) ⊆ OutC(ΠGy1

)

(respectively, α1 ∈ ZOutC(ΠGy1 )
(ρ5,3,1(H)) ∩Aut((Gx)1) ⊆ OutC(ΠGy1

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π3,3)(ρ3,3,1(H
†))

(respectively, ZOutC(Π3,6)(ρ3,3,2(H
†))),

where H† ⊆ ΠH3,3,1 (respectively, H† ⊆ ΠH3,3,2) is an open subgroup of ΠH3,3,1

(respectively, ΠH3,3,2
). This element is trivial by Claim 4.6.E.1 (respectively,

Claim 4.6.B). This completes the proof of Claim 4.6.E.2.2.
Thus, we conclude from Claim 4.6.E.2.1, Claim 4.6.E.2.2, and [CbTpI], The-

orem 4.8, (ii), (iv), that α is trivial. Hence it remains to verify the following:

Claim 4.6.E.2.3: α determines an element of Aut(Gx) that preserves
wj for each j = 1, 2.

The proof of Claim 4.6.E.2.3 is similar to the proof of Claim 4.6.D.2. This
completes the proof of Claim 4.6.E.2.

Claim 4.6.E.3: When g ≡ 0 (mod 3), Claim 4.6.E holds.

Let us first observe that by Claim 4.6.E.1, we may assume that g ≥ 5. By
considering the covering obtained by applying Lemma 4.2, (i), in the case where

t
def
= g

3 ≥ 2,

one may verify easily that there exists a k-valued point x ∈ H̃g,3,0(k) [so Gx
has no cusps!] (respectively, x ∈ H̃g,3,1(k) [so Gx has 3 cusps]) satisfying the
following conditions:

• Vert(Gx) = {v1, w1, w2, . . . , wt};
• Node(Gx) = {e1, e2, . . . , e3t};
• N (v1) = Node(Gx);
• N (wj) = {e3j−2, e3j−1, e3j} for j = 1, . . . , t;

• v1 is of type (0, 3t) (respectively, (0, 3t+ 3));

• for j = 1, . . . , t, wj is of type (1, 3).

Thus, let us fix x ∈ H̃g,3,0(k) (respectively, x ∈ H̃g,3,1(k)) satisfying the
above conditions.

Let α ∈ ZOutC(Πg,0)(ρg,3,0(H)) (respectively, α ∈ ZOutC(Πg,3)(ρg,3,1(H))) be
an outomorphism of Πg,0 (respectively, Πg,3). Suppose, moreover, that, relative
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to the isomorphism Πg,0
∼→ ΠGx (respectively, Πg,3

∼→ ΠGx) fixed above [cf.
the discussion immediately preceding Claim 4.6.B], α ∈ ZOutC(Πg,0)(ρg,3,0(H))
(respectively, α ∈ ZOutC(Πg,3)(ρg,3,1(H))) determines an element of Aut(Gx)
that preserves wj for each j = 1, . . . , t [cf. Claim 4.6.E.3.2]. For j = 1, . . . , t,
write

(Gx)j def
= (Gx)�{e3j−2,e3j−1,...,e3j}

[cf. [CbTpI], Definition 2.8]; αj for the image of α via the natural inclusion

Aut|W |(Gx) ↪→ Aut((Gx)j) [cf. [CbTpI], Definition 2.6, (i); [CbTpI], Proposition

2.9, (ii)], where we write W
def
= {w1, w2, . . . , wt}.

Next, we claim the following:

Claim 4.6.E.3.1: αj ∈ Dehn((Gx)j).
Note that one may verify easily that there exists a k-valued point yj ∈ H̃g,3,0(k)

(respectively, yj ∈ H̃g,3,1(k)) such that Gyj may be identified with (Gx)j .
By gluing together simple coverings at unramified marked points as in the

proof of Claim 4.6.D.1, we obtain a clutching morphism [cf. [Knud], Definition
3.6]

H3,3,t−1 ×H1,3,1 × · · · × H1,3,1 −→ Hg,3,0

(respectively, H3,3,t ×H1,3,1 × · · · × H1,3,1 −→ Hg,3,1),

where the number of factors in the above product is t; the first factor in the
product corresponds to the irreducible component of (Gx)j that arises from
v1 and wj ; the factors other than the first factor correspond to wj′ , for j′ ∈
{1, 2, . . . , t} \ {j}. Since the image of this clutching morphism is contained in
the normal locus of Hg,3,0 (respectively, Hg,3,1) [cf. Theorem 1.5; Corollary 1.9;
[GCH], §3.23], we thus obtain a clutching morphism

H3,3,t−1 ×H1,3,1 × · · · × H1,3,1 −→ H̃g,3,0

(respectively, H3,3,t ×H1,3,1 × · · · × H1,3,1 −→ H̃g,3,1).

Note that yj ∈ H̃g,3,0(k) (respectively, yj ∈ H̃g,3,1(k)) is contained in the image
of the above clutching morphism, and that

αj ∈ ZOutC(ΠGyj )
(ρg,3,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,3,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π3,3(t−1))
(ρ3,3,t−1(H

†))
(respectively, ZOutC(Π3,3t)(ρ3,3,t(H

†))),

where H† ⊆ ΠH3,3,t−1
(respectively, H† ⊆ ΠH3,3,t

) is an open subgroup of
ΠH3,3,t−1

(respectively, ΠH3,3,t
). Since t ≥ 2, this element is trivial by Claim
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4.6.B and Claim 4.6.E.1. In particular, αj ∈ Aut|grph|(Gyj ) ⊆ Aut(Gyj ) =
Aut((Gx)j). On the other hand,

αj ∈ ZOutC(ΠGyj )
(ρg,3,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,3,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π1,3)(ρ1,3,1(H
‡))

for each component of the above productH1,3,1×· · ·×H1,3,1, whereH
‡ ⊆ ΠH1,3,1

is an open subgroup of ΠH1,3,1 . These elements are trivial by Claim 4.6.C. This
completes the proof of Claim 4.6.E.3.1.

Thus, by varying j, we conclude from Claim 4.6.E.3.1 and [CbTpI], Theorem
4.8, (ii), (iv), that α is trivial. Hence it remains to verify the following:

Claim 4.6.E.3.2: α determines an element of Aut(Gx) that preserves
wj for each j = 1, . . . , t.

The proof of Claim 4.6.E.3.2 is similar to the proof of Claim 4.6.D.2. This
completes the proof of Claim 4.6.E.3.

Claim 4.6.E.4: When g ≡ 1 (mod 3), Claim 4.6.E holds.

Let us first observe that by Claim 4.6.E.1, we may assume that g ≥ 5. By
considering the covering obtained by applying Lemma 4.2, (ii), in the case where

t
def
= g+2

3 ≥ 3,

one may verify easily that there exists a k-valued point x ∈ H̃g,3,0(k) [so Gx
has no cusps!] (respectively, x ∈ H̃g,3,1(k) [so Gx has 3 cusps]) satisfying the
following conditions:

• Vert(Gx) = {v1, v2, v3, w1, w2, . . . , wt};
• Node(Gx) = {e1, e2, . . . , e3t};
• N (v1) = {e1, e4, . . . , e3t−2};
• N (v2) = {e2, e5, . . . , e3t−1};
• N (v3) = {e3, e6, . . . , e3t};
• N (wj) = {e3j−2, e3j−1, e3j} for j = 1, . . . , t;

• for i = 1, 2, 3, vi is of type (0, t) (respectively, (0, t+ 1));

• for j = 1, . . . , t, wj is of type (1, 3).
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Thus, let us fix x ∈ H̃g,3,0(k) (respectively, x ∈ H̃g,3,1(k)) satisfying the
above conditions.

Let α ∈ ZOutC(Πg,0)(ρg,3,0(H)) (respectively, α ∈ ZOutC(Πg,3)(ρg,3,1(H))) be
an outomorphism of Πg,0 (respectively, Πg,3). Suppose, moreover, that, relative

to the isomorphism Πg,0
∼→ ΠGx

(respectively, Πg,3
∼→ ΠGx

) fixed above [cf.
the discussion immediately preceding Claim 4.6.B], α ∈ ZOutC(Πg,0)(ρg,3,0(H))
(respectively, α ∈ ZOutC(Πg,3)(ρg,3,1(H))) determines an element of Aut(Gx)
that preserves wj for each j = 1, . . . , t [cf. Claim 4.6.E.4.2]. For j = 1, . . . , t,
write

(Gx)j def
= (Gx)�{e3j−2,e3j−1,...,e3j}

[cf. [CbTpI], Definition 2.8]; αj for the image of α via the natural inclusion

Aut|W |(Gx) ↪→ Aut((Gx)j) [cf. [CbTpI], Definition 2.6, (i); [CbTpI], Proposition

2.9, (ii)], where we write W
def
= {w1, w2, . . . , wt}.

Next, we claim the following:

Claim 4.6.E.4.1: αj ∈ Dehn((Gx)j).
Note that one may verify easily that there exists a k-valued point yj ∈ H̃g,3,0(k)

(respectively, yj ∈ H̃g,3,1(k)) such that Gyj
may be identified with (Gx)j .

By gluing together simple coverings at unramified marked points as in the
proof of Claim 4.6.D.1, we obtain a clutching morphism [cf. [Knud], Definition
3.6]

H1,3,t−1 ×H1,3,1 × · · · × H1,3,1 −→ Hg,3,0

(respectively, H1,3,t ×H1,3,1 × · · · × H1,3,1 −→ Hg,3,1),

where the number of factors in the above product is t; the first factor in the
product corresponds to the irreducible component of (Gx)j that arises from v1,
v2, v3, and wj ; the factors other than the first factor correspond to wj′ , for
j′ ∈ {1, 2, . . . , t} \ {j}. Since the image of this clutching morphism is contained
in the normal locus of Hg,3,0 (respectively, Hg,3,1) [cf. Theorem 1.5; Corollary
1.9; [GCH], §3.23], we thus obtain a clutching morphism

H1,3,t−1 ×H1,3,1 × · · · × H1,3,1 −→ H̃g,3,0

(respectively, H1,3,t ×H1,3,1 × · · · × H1,3,1 −→ H̃g,3,1).

Note that yj ∈ H̃g,3,0(k) (respectively, yj ∈ H̃g,3,1(k)) is contained in the image
of the above clutching morphism, and that

αj ∈ ZOutC(ΠGyj )
(ρg,3,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,3,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π1,3(t−1))
(ρ1,3,t−1(H

†))
(respectively, ZOutC(Π1,3t)(ρ1,3,t(H

†))),
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where H† ⊆ ΠH1,3,t−1 (respectively, H† ⊆ ΠH1,3,t) is an open subgroup of
ΠH1,3,t−1 (respectively, ΠH1,3,t). Since t ≥ 3, this element is trivial by Claim

4.6.B. In particular, αj ∈ Aut|grph|(Gyj
) ⊆ Aut(Gyj

) = Aut((Gx)j). On the
other hand,

αj ∈ ZOutC(ΠGyj )
(ρg,3,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,3,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π1,3)(ρ1,3,1(H
‡))

for each component of the above productH1,3,1×· · ·×H1,3,1, whereH
‡ ⊆ ΠH1,3,1

is an open subgroup of ΠH1,3,1
. These elements are trivial by Claim 4.6.C. This

completes the proof of Claim 4.6.E.4.1.
Thus, by varying j, we conclude from Claim 4.6.E.4.1 and [CbTpI], Theorem

4.8, (ii), (iv), that α is trivial. Hence it remains to verify the following:

Claim 4.6.E.4.2: α determines an element of Aut(Gx) that preserves
wj for each j = 1, . . . , t.

The proof of Claim 4.6.E.4.2 is similar to the proof of Claim 4.6.D.2. This
completes the proof of Claim 4.6.E.4.

Claim 4.6.E.5: When g ≡ 2 (mod 3), Claim 4.6.E holds.

Let us first observe that by Claim 4.6.E.2, we may assume that g ≥ 8. By
considering the covering obtained by applying Lemma 4.2, (iii), in the case
where

t
def
= g+1

3 ≥ 3,

one may verify easily that there exists a k-valued point x ∈ H̃g,3,0(k) [so Gx
has no cusps!] (respectively, x ∈ H̃g,3,1(k) [so Gx has 3 cusps]) satisfying the
following conditions:

• Vert(Gx) = {v1, v2, w1, w2, . . . , wt};
• Node(Gx) = {e1, e2, . . . , e3t};
• N (v1) = {e1, e2, e4, e5, . . . , e3t−2, e3t−1};
• N (v2) = {e3, e6, . . . , e3t};
• N (wj) = {e3j−2, e3j−1, e3j} for j = 1, . . . , t;

• v1 is of type (0, 2t) (respectively, (0, 2t+ 2));

• v2 is of type (0, t) (respectively, (0, t+ 1));
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• for j = 1, . . . , t, wj is of type (1, 3).

Thus, let us fix x ∈ H̃g,3,0(k) (respectively, x ∈ H̃g,3,1(k)) satisfying the
above conditions.

Let α ∈ ZOutC(Πg,0)(ρg,3,0(H)) (respectively, α ∈ ZOutC(Πg,3)(ρg,3,1(H))) be
an outomorphism of Πg,0 (respectively, Πg,3). Suppose, moreover, that, relative

to the isomorphism Πg,0
∼→ ΠGx

(respectively, Πg,3
∼→ ΠGx

) fixed above [cf.
the discussion immediately preceding Claim 4.6.B], α ∈ ZOutC(Πg,0)(ρg,3,0(H))
(respectively, α ∈ ZOutC(Πg,3)(ρg,3,1(H))) determines an element of Aut(Gx)
that preserves wj for each j = 1, . . . , t [cf. Claim 4.6.E.5.2]. For j = 1, . . . , t,
write

(Gx)j def
= (Gx)�{e3j−2,e3j−1,...,e3j}

[cf. [CbTpI], Definition 2.8]; αj for the image of α via the natural inclusion

Aut|W |(Gx) ↪→ Aut((Gx)j) [cf. [CbTpI], Definition 2.6, (i); [CbTpI], Proposition

2.9, (ii)], where we write W
def
= {w1, w2, . . . , wt}.

Next, we claim the following:

Claim 4.6.E.5.1: αj ∈ Dehn((Gx)j).
Note that one may verify easily that there exists a k-valued point yj ∈ H̃g,3,0(k)

(respectively, yj ∈ H̃g,3,1(k)) such that Gyj may be identified with (Gx)j .
By gluing together simple coverings at unramified marked points as in the

proof of Claim 4.6.D.1, we obtain a clutching morphism [cf. [Knud], Definition
3.6]

H2,3,t−1 ×H1,3,1 × · · · × H1,3,1 −→ Hg,3,0

(respectively, H2,3,t ×H1,3,1 × · · · × H1,3,1 −→ Hg,3,1),

where the number of factors in the above product is t; the first factor in the
product corresponds to the irreducible component of (Gx)j that arises from
v1, v2, and wj ; the factors other than the first factor correspond to wj′ , for
j′ ∈ {1, 2, . . . , t} \ {j}. Since the image of this clutching morphism is contained
in the normal locus of Hg,3,0 (respectively, Hg,3,1) [cf. Theorem 1.5; Corollary
1.9; [GCH], §3.23], we thus obtain a clutching morphism

H2,3,t−1 ×H1,3,1 × · · · × H1,3,1 −→ H̃g,3,0

(respectively, H2,3,t ×H1,3,1 × · · · × H1,3,1 −→ H̃g,3,1).

Note that yj ∈ H̃g,3,0(k) (respectively, yj ∈ H̃g,3,1(k)) is contained in the image
of the above clutching morphism, and that

αj ∈ ZOutC(ΠGyj )
(ρg,3,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,3,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π2,3(t−1))
(ρ2,3,t−1(H

†))
(respectively, ZOutC(Π2,3t)(ρ2,3,t(H

†))),
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where H† ⊆ ΠH2,3,t−1 (respectively, H† ⊆ ΠH2,3,t) is an open subgroup of
ΠH2,3,t−1 (respectively, ΠH2,3,t). Since t ≥ 3, this element is trivial by Claim

4.6.B. In particular, αj ∈ Aut|grph|(Gyj
) ⊆ Aut(Gyj

) = Aut((Gx)j). On the
other hand,

αj ∈ ZOutC(ΠGyj )
(ρg,3,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,3,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))

naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π1,3)(ρ1,3,1(H
‡))

for each component of the above productH1,3,1×· · ·×H1,3,1, whereH
‡ ⊆ ΠH1,3,1

is an open subgroup of ΠH1,3,1 . These elements are trivial by Claim 4.6.C. This
completes the proof of Claim 4.6.E.5.1.

Thus, by varying j, we conclude from Claim 4.6.E.5.1 and [CbTpI], Theorem
4.8, (ii), (iv), that α is trivial. Hence it remains to verify the following:

Claim 4.6.E.5.2: α determines an element of Aut(Gx) that preserves
wj for each j = 1, . . . , t.

The proof of Claim 4.6.E.5.2 is similar to the proof of Claim 4.6.D.2. This
completes the proof of Claim 4.6.E.5.

Next, we verify the following assertion:

Claim 4.6.F: Suppose that

r = 0, d = 2 (respectively, r = 1, d = 2).

Then the injection Aut(Hg,d,r)k((Cg,d,r)k) ↪→ ZOutC(Πg,dr)(ρg,d,r(H))
is surjective. Moreover, the description of Aut(Hg,d,r)k((Cg,d,r)k) in
the statement of Theorem 4.6, (ii), holds.

By Claim 4.6.C, we may assume that g ≥ 3 (respectively, g ≥ 2). Since the hy-
perelliptic involution determines a nontrivial element of Aut(Hg,2,r)k((Cg,2,r)k),
it suffices to show that the cardinality of the centralizer ZOutC(Πg,2r)(ρg,2,r(H))
is equal to 2. Next, let us observe that by considering the covering obtained by
applying Lemma 4.5 in the case where

t
def
= g + 1,

one may verify easily that there exists a k-valued point x ∈ H̃g,2,0(k) [so Gx
has no cusps!] (respectively, x ∈ H̃g,2,1(k) [so Gx has 2 cusps]) satisfying the
following conditions:

• Vert(Gx) = {v1, v2} [the hyperelliptic involution permutes v1, v2];

• Node(Gx) = {e1, e2, . . . , et} [the hyperelliptic involution permutes the
branches of each ej , for j = 1, . . . , t];
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• N (v1) = N (v2) = Node(Gx);
• for i = 1, 2, vi is of type (0, t) (respectively, (0, t+ 1)).

Thus, let us fix x ∈ H̃g,2,0(k) (respectively, x ∈ H̃g,2,1(k)) satisfying the
above conditions.

Let α ∈ ZOutC(Πg,0)(ρg,2,0(H)) (respectively, α ∈ ZOutC(Πg,2)(ρg,2,1(H))) be
an outomorphism of Πg,0 (respectively, Πg,2). Suppose, moreover, that, relative

to the isomorphism Πg,0
∼→ ΠGx

(respectively, Πg,2
∼→ ΠGx

) fixed above [cf. the
discussion immediately preceding Claim 4.6.B], α ∈ ZOutC(Πg,0)(ρg,2,0(H)) (re-

spectively, α ∈ ZOutC(Πg,2)(ρg,2,1(H))) determines an element of Aut|grph|(Gx)
[cf. Claim 4.6.F.2]. For j = 1, . . . , t, write

(Gx)j def
= (Gx)�{ej}

[cf. [CbTpI], Definition 2.8]; αj for the image of α via the natural inclusion

Aut|E|(Gx) ↪→ Aut((Gx)j) [cf. [CbTpI], Definition 2.6, (i); [CbTpI], Proposition

2.9, (ii)], where we write E
def
= {e1, e2, . . . , et}.

Next, we claim the following:

Claim 4.6.F.1: αj ∈ Dehn((Gx)j).
Note that one may verify easily that there exists a k-valued point yj ∈ H̃g,2,0(k)

(respectively, yj ∈ H̃g,2,1(k)) such that Gyj
corresponds to (Gx)j .

By gluing together simple coverings at unramified marked points as in the
proof of Claim 4.6.D.1, we obtain a clutching morphism

H0,2,t−1 ×H0,2,1 × · · · × H0,2,1 −→ Hg,2,0

(respectively, H0,2,t ×H0,2,1 × · · · × H0,2,1 −→ Hg,2,1),

where the number of factors in the above product is t; the first factor in the
product corresponds to the irreducible component of (Gx)j that arises from
v1, v2, and ej ; the factors other than the first factor correspond to ej′ , for
j′ ∈ {1, 2, . . . , t} \ {j}. Since the image of this clutching morphism is contained
in the normal locus of Hg,2,0 (respectively, Hg,2,1) [cf. Theorem 1.5; Corollary
1.9; [GCH], §3.23], we thus obtain a clutching morphism

H0,2,t−1 ×H0,2,1 × · · · × H0,2,1 −→ H̃g,2,0

(respectively, H0,2,t ×H0,2,1 × · · · × H0,2,1 −→ H̃g,2,1).

Note that yj ∈ H̃g,2,0(k) (respectively, yj ∈ H̃g,2,1(k)) is contained in the image
of the above clutching morphism, and that

αj ∈ ZOutC(ΠGyj )
(ρg,2,0(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

)

(respectively, αj ∈ ZOutC(ΠGyj )
(ρg,2,1(H)) ∩Aut((Gx)j) ⊆ OutC(ΠGyj

))
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naturally determines, by considering the above clutching morphism, an element
of

ZOutC(Π0,2(t−1))
(ρ0,2,t−1(H

†))
(respectively, ZOutC(Π0,2t)(ρ0,2,t(H

†))),

where H† ⊆ ΠH0,2,t−1
(respectively, H† ⊆ ΠH0,2,t

) is an open subgroup of
ΠH0,2,t−1 (respectively, ΠH0,2,t). Since, by assumption, α ∈ ZOutC(Πg,0)(ρg,2,0(H))

(respectively, α ∈ ZOutC(Πg,2)(ρg,2,1(H))) determines an element of Aut|grph|(Gx),
and t ≥ 4 (respectively, t ≥ 3), this element is trivial by Claim 4.6.B. This com-
pletes the proof of Claim 4.6.F.1.

Thus, by varying j, we conclude from Claim 4.6.F.1 and [CbTpI], Theorem
4.8, (ii), (iv), that α is trivial. Hence it remains to verify the following:

Claim 4.6.F.2: α determines an element of Aut(Gx) that preserves
ej for each j = 1, . . . , t. In particular, by taking the composite with
the hyperelliptic involution if necessary, α ∈ ZOutC(Πg,0)(ρg,2,0(H))
(respectively, α ∈ ZOutC(Πg,2)(ρg,2,1(H))) determines an element of

Aut|grph|(Gx).
The proof of Claim 4.6.F.2 is similar to the proof of Claim 4.6.D.2. This com-
pletes the proof of Claim 4.6.F.

Thus, in summary, we have proven assertion (ii) in the following cases:

r ≥ 2 (Claim 4.6.B, Claim 4.6.C),
r ≤ 1, d ≥ 4 (Claim 4.6.D),
r ≤ 1, d = 3 (Claim 4.6.E),
r ≤ 1, d = 2 (Claim 4.6.F).

Since these cases cover all of the possibilities for r and d, this completes the
proof of assertion (ii).

Assertion (iii) follows immediately from assertion (ii). This completes the
proof of Theorem 4.6.
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